Upload 13 files
Browse files- .gitattributes +1 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- config.json +47 -0
- generation_config.json +15 -0
- merges.txt +0 -0
- model.safetensors.index.json +737 -0
- preprocessor_config.json +29 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +145 -0
- trainer_state.json +2273 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|box_end|>": 151649,
|
| 3 |
+
"<|box_start|>": 151648,
|
| 4 |
+
"<|endoftext|>": 151643,
|
| 5 |
+
"<|im_end|>": 151645,
|
| 6 |
+
"<|im_start|>": 151644,
|
| 7 |
+
"<|image_pad|>": 151655,
|
| 8 |
+
"<|object_ref_end|>": 151647,
|
| 9 |
+
"<|object_ref_start|>": 151646,
|
| 10 |
+
"<|quad_end|>": 151651,
|
| 11 |
+
"<|quad_start|>": 151650,
|
| 12 |
+
"<|video_pad|>": 151656,
|
| 13 |
+
"<|vision_end|>": 151653,
|
| 14 |
+
"<|vision_pad|>": 151654,
|
| 15 |
+
"<|vision_start|>": 151652
|
| 16 |
+
}
|
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/data/wangxd/models/Qwen2-VL-7B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2VLForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"image_token_id": 151655,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 18944,
|
| 14 |
+
"max_position_embeddings": 32768,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen2_vl",
|
| 17 |
+
"num_attention_heads": 28,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 4,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": {
|
| 22 |
+
"mrope_section": [
|
| 23 |
+
16,
|
| 24 |
+
24,
|
| 25 |
+
24
|
| 26 |
+
],
|
| 27 |
+
"rope_type": "default",
|
| 28 |
+
"type": "default"
|
| 29 |
+
},
|
| 30 |
+
"rope_theta": 1000000.0,
|
| 31 |
+
"sliding_window": 32768,
|
| 32 |
+
"tie_word_embeddings": false,
|
| 33 |
+
"torch_dtype": "bfloat16",
|
| 34 |
+
"transformers_version": "4.48.3",
|
| 35 |
+
"use_cache": false,
|
| 36 |
+
"use_sliding_window": false,
|
| 37 |
+
"video_token_id": 151656,
|
| 38 |
+
"vision_config": {
|
| 39 |
+
"in_chans": 3,
|
| 40 |
+
"model_type": "qwen2_vl",
|
| 41 |
+
"spatial_patch_size": 14
|
| 42 |
+
},
|
| 43 |
+
"vision_end_token_id": 151653,
|
| 44 |
+
"vision_start_token_id": 151652,
|
| 45 |
+
"vision_token_id": 151654,
|
| 46 |
+
"vocab_size": 152064
|
| 47 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_implementation": "flash_attention_2",
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
151645,
|
| 7 |
+
151643
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 151643,
|
| 10 |
+
"temperature": 0.01,
|
| 11 |
+
"top_k": 1,
|
| 12 |
+
"top_p": 0.001,
|
| 13 |
+
"transformers_version": "4.48.3",
|
| 14 |
+
"use_cache": false
|
| 15 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16582751232
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
| 345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
| 354 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
| 355 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
| 356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
| 368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
| 380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
| 404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
| 416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
| 438 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
| 440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
| 452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
| 464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
| 476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
| 488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
| 500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 508 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 509 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
| 512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
| 522 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
| 523 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
| 524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
| 536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
| 537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
| 548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
| 560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 565 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
| 572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 578 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 579 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
| 584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 592 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 593 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
|
| 596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
|
| 606 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
| 607 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
|
| 608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
|
| 620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
| 621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
| 632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
| 643 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
|
| 644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
| 645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 649 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 650 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 651 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 652 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 653 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
|
| 654 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
| 655 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
|
| 656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
| 657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 661 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 662 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 663 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 664 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 665 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
| 666 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
| 667 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
| 668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
| 669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 673 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 674 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 675 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 676 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 677 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
| 678 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
| 679 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
| 680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
| 681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 685 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 686 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 687 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 688 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 689 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
| 690 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
| 691 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
| 692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
| 693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 697 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 698 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 699 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 700 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 701 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
| 702 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
| 703 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
| 704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
| 705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 709 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 710 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 711 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 712 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 713 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
| 714 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
| 715 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
| 716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
| 717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 721 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 722 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 723 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 724 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 725 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
| 726 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
| 727 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
| 728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
| 729 |
+
"visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
|
| 730 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
| 731 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
| 732 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
| 733 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
| 734 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
| 735 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
| 736 |
+
}
|
| 737 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.48145466,
|
| 8 |
+
0.4578275,
|
| 9 |
+
0.40821073
|
| 10 |
+
],
|
| 11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"max_pixels": 12845056,
|
| 18 |
+
"merge_size": 2,
|
| 19 |
+
"min_pixels": 3136,
|
| 20 |
+
"patch_size": 14,
|
| 21 |
+
"processor_class": "Qwen2VLProcessor",
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"max_pixels": 12845056,
|
| 26 |
+
"min_pixels": 3136
|
| 27 |
+
},
|
| 28 |
+
"temporal_patch_size": 2
|
| 29 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
|
| 3 |
+
size 11420538
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151646": {
|
| 29 |
+
"content": "<|object_ref_start|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"151647": {
|
| 37 |
+
"content": "<|object_ref_end|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"151648": {
|
| 45 |
+
"content": "<|box_start|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"151649": {
|
| 53 |
+
"content": "<|box_end|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"151650": {
|
| 61 |
+
"content": "<|quad_start|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"151651": {
|
| 69 |
+
"content": "<|quad_end|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"151652": {
|
| 77 |
+
"content": "<|vision_start|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"151653": {
|
| 85 |
+
"content": "<|vision_end|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"151654": {
|
| 93 |
+
"content": "<|vision_pad|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"151655": {
|
| 101 |
+
"content": "<|image_pad|>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"151656": {
|
| 109 |
+
"content": "<|video_pad|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
"additional_special_tokens": [
|
| 118 |
+
"<|im_start|>",
|
| 119 |
+
"<|im_end|>",
|
| 120 |
+
"<|object_ref_start|>",
|
| 121 |
+
"<|object_ref_end|>",
|
| 122 |
+
"<|box_start|>",
|
| 123 |
+
"<|box_end|>",
|
| 124 |
+
"<|quad_start|>",
|
| 125 |
+
"<|quad_end|>",
|
| 126 |
+
"<|vision_start|>",
|
| 127 |
+
"<|vision_end|>",
|
| 128 |
+
"<|vision_pad|>",
|
| 129 |
+
"<|image_pad|>",
|
| 130 |
+
"<|video_pad|>"
|
| 131 |
+
],
|
| 132 |
+
"bos_token": null,
|
| 133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
| 134 |
+
"clean_up_tokenization_spaces": false,
|
| 135 |
+
"eos_token": "<|im_end|>",
|
| 136 |
+
"errors": "replace",
|
| 137 |
+
"extra_special_tokens": {},
|
| 138 |
+
"model_max_length": 32768,
|
| 139 |
+
"pad_token": "<|endoftext|>",
|
| 140 |
+
"padding_side": "left",
|
| 141 |
+
"processor_class": "Qwen2VLProcessor",
|
| 142 |
+
"split_special_tokens": false,
|
| 143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 144 |
+
"unk_token": null
|
| 145 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.13733905579399142,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 160,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"advantages": 1.862645149230957e-08,
|
| 13 |
+
"completion_length": 129.0625,
|
| 14 |
+
"epoch": 0.0008583690987124463,
|
| 15 |
+
"grad_norm": 174.6410675048828,
|
| 16 |
+
"kl": 4.34375,
|
| 17 |
+
"learning_rate": 9.991416309012877e-07,
|
| 18 |
+
"loss": 0.434,
|
| 19 |
+
"reward": 0.15625,
|
| 20 |
+
"reward_mean": 0.15625,
|
| 21 |
+
"reward_std": 0.3198433816432953,
|
| 22 |
+
"rewards/accuracy_reward": 0.15625,
|
| 23 |
+
"step": 1
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"advantages": 1.30385160446167e-08,
|
| 27 |
+
"completion_length": 138.0625,
|
| 28 |
+
"epoch": 0.0017167381974248926,
|
| 29 |
+
"grad_norm": 332.6672668457031,
|
| 30 |
+
"kl": 5.21875,
|
| 31 |
+
"learning_rate": 9.982832618025751e-07,
|
| 32 |
+
"loss": 0.5223,
|
| 33 |
+
"reward": 0.34375,
|
| 34 |
+
"reward_mean": 0.34375,
|
| 35 |
+
"reward_std": 0.4628904461860657,
|
| 36 |
+
"rewards/accuracy_reward": 0.34375,
|
| 37 |
+
"step": 2
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"advantages": 2.421438694000244e-08,
|
| 41 |
+
"completion_length": 117.4375,
|
| 42 |
+
"epoch": 0.002575107296137339,
|
| 43 |
+
"grad_norm": 166.6440887451172,
|
| 44 |
+
"kl": 3.5,
|
| 45 |
+
"learning_rate": 9.974248927038626e-07,
|
| 46 |
+
"loss": 0.3496,
|
| 47 |
+
"reward": 0.21875,
|
| 48 |
+
"reward_mean": 0.21875,
|
| 49 |
+
"reward_std": 0.3608423173427582,
|
| 50 |
+
"rewards/accuracy_reward": 0.21875,
|
| 51 |
+
"step": 3
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"advantages": 7.450580596923828e-09,
|
| 55 |
+
"completion_length": 126.59375,
|
| 56 |
+
"epoch": 0.0034334763948497852,
|
| 57 |
+
"grad_norm": 111.89189910888672,
|
| 58 |
+
"kl": 1.5078125,
|
| 59 |
+
"learning_rate": 9.965665236051501e-07,
|
| 60 |
+
"loss": 0.1505,
|
| 61 |
+
"reward": 0.0625,
|
| 62 |
+
"reward_mean": 0.0625,
|
| 63 |
+
"reward_std": 0.1767766922712326,
|
| 64 |
+
"rewards/accuracy_reward": 0.0625,
|
| 65 |
+
"step": 4
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"advantages": 1.4901161193847656e-08,
|
| 69 |
+
"completion_length": 164.875,
|
| 70 |
+
"epoch": 0.004291845493562232,
|
| 71 |
+
"grad_norm": 38.75446701049805,
|
| 72 |
+
"kl": 1.359375,
|
| 73 |
+
"learning_rate": 9.957081545064378e-07,
|
| 74 |
+
"loss": 0.1359,
|
| 75 |
+
"reward": 0.25,
|
| 76 |
+
"reward_mean": 0.25,
|
| 77 |
+
"reward_std": 0.4261348247528076,
|
| 78 |
+
"rewards/accuracy_reward": 0.25,
|
| 79 |
+
"step": 5
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"advantages": 2.0489096641540527e-08,
|
| 83 |
+
"completion_length": 136.9375,
|
| 84 |
+
"epoch": 0.005150214592274678,
|
| 85 |
+
"grad_norm": 278.40093994140625,
|
| 86 |
+
"kl": 4.5,
|
| 87 |
+
"learning_rate": 9.948497854077253e-07,
|
| 88 |
+
"loss": 0.4497,
|
| 89 |
+
"reward": 0.1875,
|
| 90 |
+
"reward_mean": 0.1875,
|
| 91 |
+
"reward_std": 0.3945523500442505,
|
| 92 |
+
"rewards/accuracy_reward": 0.1875,
|
| 93 |
+
"step": 6
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"advantages": 2.60770320892334e-08,
|
| 97 |
+
"completion_length": 150.8125,
|
| 98 |
+
"epoch": 0.006008583690987125,
|
| 99 |
+
"grad_norm": 189.5176544189453,
|
| 100 |
+
"kl": 2.75,
|
| 101 |
+
"learning_rate": 9.939914163090128e-07,
|
| 102 |
+
"loss": 0.2753,
|
| 103 |
+
"reward": 0.375,
|
| 104 |
+
"reward_mean": 0.375,
|
| 105 |
+
"reward_std": 0.5081326961517334,
|
| 106 |
+
"rewards/accuracy_reward": 0.375,
|
| 107 |
+
"step": 7
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"advantages": 1.30385160446167e-08,
|
| 111 |
+
"completion_length": 135.5,
|
| 112 |
+
"epoch": 0.0068669527896995704,
|
| 113 |
+
"grad_norm": 1704.9647216796875,
|
| 114 |
+
"kl": 4.34375,
|
| 115 |
+
"learning_rate": 9.931330472103003e-07,
|
| 116 |
+
"loss": 0.4358,
|
| 117 |
+
"reward": 0.125,
|
| 118 |
+
"reward_mean": 0.125,
|
| 119 |
+
"reward_std": 0.2177756428718567,
|
| 120 |
+
"rewards/accuracy_reward": 0.125,
|
| 121 |
+
"step": 8
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"advantages": 1.1175870895385742e-08,
|
| 125 |
+
"completion_length": 116.96875,
|
| 126 |
+
"epoch": 0.007725321888412017,
|
| 127 |
+
"grad_norm": 26.27825927734375,
|
| 128 |
+
"kl": 0.8671875,
|
| 129 |
+
"learning_rate": 9.92274678111588e-07,
|
| 130 |
+
"loss": 0.0868,
|
| 131 |
+
"reward": 0.09375,
|
| 132 |
+
"reward_mean": 0.09375,
|
| 133 |
+
"reward_std": 0.2651650309562683,
|
| 134 |
+
"rewards/accuracy_reward": 0.09375,
|
| 135 |
+
"step": 9
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"advantages": -9.313225746154785e-09,
|
| 139 |
+
"completion_length": 105.625,
|
| 140 |
+
"epoch": 0.008583690987124463,
|
| 141 |
+
"grad_norm": 115.19660949707031,
|
| 142 |
+
"kl": 1.28125,
|
| 143 |
+
"learning_rate": 9.914163090128755e-07,
|
| 144 |
+
"loss": 0.1278,
|
| 145 |
+
"reward": 0.53125,
|
| 146 |
+
"reward_mean": 0.53125,
|
| 147 |
+
"reward_std": 0.521792471408844,
|
| 148 |
+
"rewards/accuracy_reward": 0.53125,
|
| 149 |
+
"step": 10
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"advantages": 1.30385160446167e-08,
|
| 153 |
+
"completion_length": 125.78125,
|
| 154 |
+
"epoch": 0.00944206008583691,
|
| 155 |
+
"grad_norm": 242.439453125,
|
| 156 |
+
"kl": 3.75,
|
| 157 |
+
"learning_rate": 9.90557939914163e-07,
|
| 158 |
+
"loss": 0.3733,
|
| 159 |
+
"reward": 0.125,
|
| 160 |
+
"reward_mean": 0.125,
|
| 161 |
+
"reward_std": 0.2177756428718567,
|
| 162 |
+
"rewards/accuracy_reward": 0.125,
|
| 163 |
+
"step": 11
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"advantages": 2.421438694000244e-08,
|
| 167 |
+
"completion_length": 140.65625,
|
| 168 |
+
"epoch": 0.010300429184549357,
|
| 169 |
+
"grad_norm": 57.61454772949219,
|
| 170 |
+
"kl": 1.5625,
|
| 171 |
+
"learning_rate": 9.896995708154506e-07,
|
| 172 |
+
"loss": 0.1566,
|
| 173 |
+
"reward": 0.21875,
|
| 174 |
+
"reward_mean": 0.21875,
|
| 175 |
+
"reward_std": 0.4218915104866028,
|
| 176 |
+
"rewards/accuracy_reward": 0.21875,
|
| 177 |
+
"step": 12
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"advantages": 1.4901161193847656e-08,
|
| 181 |
+
"completion_length": 122.3125,
|
| 182 |
+
"epoch": 0.011158798283261802,
|
| 183 |
+
"grad_norm": 9.250263214111328,
|
| 184 |
+
"kl": 0.416015625,
|
| 185 |
+
"learning_rate": 9.888412017167381e-07,
|
| 186 |
+
"loss": 0.0417,
|
| 187 |
+
"reward": 0.125,
|
| 188 |
+
"reward_mean": 0.125,
|
| 189 |
+
"reward_std": 0.292504221200943,
|
| 190 |
+
"rewards/accuracy_reward": 0.125,
|
| 191 |
+
"step": 13
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"advantages": 7.450580596923828e-09,
|
| 195 |
+
"completion_length": 134.34375,
|
| 196 |
+
"epoch": 0.01201716738197425,
|
| 197 |
+
"grad_norm": 29.975547790527344,
|
| 198 |
+
"kl": 0.76171875,
|
| 199 |
+
"learning_rate": 9.879828326180258e-07,
|
| 200 |
+
"loss": 0.0763,
|
| 201 |
+
"reward": 0.1875,
|
| 202 |
+
"reward_mean": 0.1875,
|
| 203 |
+
"reward_std": 0.3104073107242584,
|
| 204 |
+
"rewards/accuracy_reward": 0.1875,
|
| 205 |
+
"step": 14
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"advantages": -5.587935447692871e-09,
|
| 209 |
+
"completion_length": 136.5,
|
| 210 |
+
"epoch": 0.012875536480686695,
|
| 211 |
+
"grad_norm": 35.626949310302734,
|
| 212 |
+
"kl": 0.9140625,
|
| 213 |
+
"learning_rate": 9.871244635193133e-07,
|
| 214 |
+
"loss": 0.0915,
|
| 215 |
+
"reward": 0.3125,
|
| 216 |
+
"reward_mean": 0.3125,
|
| 217 |
+
"reward_std": 0.3514062464237213,
|
| 218 |
+
"rewards/accuracy_reward": 0.3125,
|
| 219 |
+
"step": 15
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"advantages": 2.421438694000244e-08,
|
| 223 |
+
"completion_length": 133.84375,
|
| 224 |
+
"epoch": 0.013733905579399141,
|
| 225 |
+
"grad_norm": 127.25942993164062,
|
| 226 |
+
"kl": 1.765625,
|
| 227 |
+
"learning_rate": 9.862660944206008e-07,
|
| 228 |
+
"loss": 0.176,
|
| 229 |
+
"reward": 0.21875,
|
| 230 |
+
"reward_mean": 0.21875,
|
| 231 |
+
"reward_std": 0.3608423173427582,
|
| 232 |
+
"rewards/accuracy_reward": 0.21875,
|
| 233 |
+
"step": 16
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"advantages": 2.0489096641540527e-08,
|
| 237 |
+
"completion_length": 110.25,
|
| 238 |
+
"epoch": 0.014592274678111588,
|
| 239 |
+
"grad_norm": 51.83127975463867,
|
| 240 |
+
"kl": 0.52734375,
|
| 241 |
+
"learning_rate": 9.854077253218883e-07,
|
| 242 |
+
"loss": 0.0526,
|
| 243 |
+
"reward": 0.1875,
|
| 244 |
+
"reward_mean": 0.1875,
|
| 245 |
+
"reward_std": 0.3335031569004059,
|
| 246 |
+
"rewards/accuracy_reward": 0.1875,
|
| 247 |
+
"step": 17
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"advantages": 1.6763806343078613e-08,
|
| 251 |
+
"completion_length": 132.71875,
|
| 252 |
+
"epoch": 0.015450643776824034,
|
| 253 |
+
"grad_norm": 71.73090362548828,
|
| 254 |
+
"kl": 1.375,
|
| 255 |
+
"learning_rate": 9.84549356223176e-07,
|
| 256 |
+
"loss": 0.1369,
|
| 257 |
+
"reward": 0.4375,
|
| 258 |
+
"reward_mean": 0.4375,
|
| 259 |
+
"reward_std": 0.5260357856750488,
|
| 260 |
+
"rewards/accuracy_reward": 0.4375,
|
| 261 |
+
"step": 18
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"advantages": 1.4901161193847656e-08,
|
| 265 |
+
"completion_length": 139.96875,
|
| 266 |
+
"epoch": 0.01630901287553648,
|
| 267 |
+
"grad_norm": 47.92875289916992,
|
| 268 |
+
"kl": 0.92578125,
|
| 269 |
+
"learning_rate": 9.836909871244635e-07,
|
| 270 |
+
"loss": 0.0925,
|
| 271 |
+
"reward": 0.15625,
|
| 272 |
+
"reward_mean": 0.15625,
|
| 273 |
+
"reward_std": 0.24511480331420898,
|
| 274 |
+
"rewards/accuracy_reward": 0.15625,
|
| 275 |
+
"step": 19
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"advantages": 2.60770320892334e-08,
|
| 279 |
+
"completion_length": 139.8125,
|
| 280 |
+
"epoch": 0.017167381974248927,
|
| 281 |
+
"grad_norm": 32.31055450439453,
|
| 282 |
+
"kl": 0.703125,
|
| 283 |
+
"learning_rate": 9.82832618025751e-07,
|
| 284 |
+
"loss": 0.0701,
|
| 285 |
+
"reward": 0.25,
|
| 286 |
+
"reward_mean": 0.25,
|
| 287 |
+
"reward_std": 0.4355512857437134,
|
| 288 |
+
"rewards/accuracy_reward": 0.25,
|
| 289 |
+
"step": 20
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"advantages": 1.1175870895385742e-08,
|
| 293 |
+
"completion_length": 122.3125,
|
| 294 |
+
"epoch": 0.018025751072961373,
|
| 295 |
+
"grad_norm": 12.536384582519531,
|
| 296 |
+
"kl": 0.423828125,
|
| 297 |
+
"learning_rate": 9.819742489270387e-07,
|
| 298 |
+
"loss": 0.0424,
|
| 299 |
+
"reward": 0.09375,
|
| 300 |
+
"reward_mean": 0.09375,
|
| 301 |
+
"reward_std": 0.2651650309562683,
|
| 302 |
+
"rewards/accuracy_reward": 0.09375,
|
| 303 |
+
"step": 21
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"advantages": 1.4901161193847656e-08,
|
| 307 |
+
"completion_length": 155.6875,
|
| 308 |
+
"epoch": 0.01888412017167382,
|
| 309 |
+
"grad_norm": 9.963027954101562,
|
| 310 |
+
"kl": 0.421875,
|
| 311 |
+
"learning_rate": 9.811158798283261e-07,
|
| 312 |
+
"loss": 0.0421,
|
| 313 |
+
"reward": 0.125,
|
| 314 |
+
"reward_mean": 0.125,
|
| 315 |
+
"reward_std": 0.3535533845424652,
|
| 316 |
+
"rewards/accuracy_reward": 0.125,
|
| 317 |
+
"step": 22
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"advantages": 1.1175870895385742e-08,
|
| 321 |
+
"completion_length": 137.15625,
|
| 322 |
+
"epoch": 0.019742489270386267,
|
| 323 |
+
"grad_norm": 6.500565052032471,
|
| 324 |
+
"kl": 0.25,
|
| 325 |
+
"learning_rate": 9.802575107296136e-07,
|
| 326 |
+
"loss": 0.025,
|
| 327 |
+
"reward": 0.09375,
|
| 328 |
+
"reward_mean": 0.09375,
|
| 329 |
+
"reward_std": 0.2651650309562683,
|
| 330 |
+
"rewards/accuracy_reward": 0.09375,
|
| 331 |
+
"step": 23
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"advantages": 5.587935447692871e-09,
|
| 335 |
+
"completion_length": 143.4375,
|
| 336 |
+
"epoch": 0.020600858369098713,
|
| 337 |
+
"grad_norm": 4.852046012878418,
|
| 338 |
+
"kl": 0.208984375,
|
| 339 |
+
"learning_rate": 9.793991416309011e-07,
|
| 340 |
+
"loss": 0.021,
|
| 341 |
+
"reward": 0.28125,
|
| 342 |
+
"reward_mean": 0.28125,
|
| 343 |
+
"reward_std": 0.3608423173427582,
|
| 344 |
+
"rewards/accuracy_reward": 0.28125,
|
| 345 |
+
"step": 24
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"advantages": 1.4901161193847656e-08,
|
| 349 |
+
"completion_length": 130.03125,
|
| 350 |
+
"epoch": 0.02145922746781116,
|
| 351 |
+
"grad_norm": 11.683233261108398,
|
| 352 |
+
"kl": 0.396484375,
|
| 353 |
+
"learning_rate": 9.785407725321888e-07,
|
| 354 |
+
"loss": 0.0395,
|
| 355 |
+
"reward": 0.125,
|
| 356 |
+
"reward_mean": 0.125,
|
| 357 |
+
"reward_std": 0.2925041913986206,
|
| 358 |
+
"rewards/accuracy_reward": 0.125,
|
| 359 |
+
"step": 25
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"advantages": 3.166496753692627e-08,
|
| 363 |
+
"completion_length": 150.59375,
|
| 364 |
+
"epoch": 0.022317596566523604,
|
| 365 |
+
"grad_norm": 7.088483810424805,
|
| 366 |
+
"kl": 0.29296875,
|
| 367 |
+
"learning_rate": 9.776824034334763e-07,
|
| 368 |
+
"loss": 0.0294,
|
| 369 |
+
"reward": 0.28125,
|
| 370 |
+
"reward_mean": 0.28125,
|
| 371 |
+
"reward_std": 0.4765698313713074,
|
| 372 |
+
"rewards/accuracy_reward": 0.28125,
|
| 373 |
+
"step": 26
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"advantages": 2.9802322387695312e-08,
|
| 377 |
+
"completion_length": 125.1875,
|
| 378 |
+
"epoch": 0.02317596566523605,
|
| 379 |
+
"grad_norm": 9.142675399780273,
|
| 380 |
+
"kl": 0.41015625,
|
| 381 |
+
"learning_rate": 9.76824034334764e-07,
|
| 382 |
+
"loss": 0.0412,
|
| 383 |
+
"reward": 0.28125,
|
| 384 |
+
"reward_mean": 0.28125,
|
| 385 |
+
"reward_std": 0.4628904461860657,
|
| 386 |
+
"rewards/accuracy_reward": 0.28125,
|
| 387 |
+
"step": 27
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"advantages": 1.30385160446167e-08,
|
| 391 |
+
"completion_length": 146.21875,
|
| 392 |
+
"epoch": 0.0240343347639485,
|
| 393 |
+
"grad_norm": 7.925714492797852,
|
| 394 |
+
"kl": 0.22265625,
|
| 395 |
+
"learning_rate": 9.759656652360515e-07,
|
| 396 |
+
"loss": 0.0222,
|
| 397 |
+
"reward": 0.375,
|
| 398 |
+
"reward_mean": 0.375,
|
| 399 |
+
"reward_std": 0.47655022144317627,
|
| 400 |
+
"rewards/accuracy_reward": 0.375,
|
| 401 |
+
"step": 28
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"advantages": 1.1175870895385742e-08,
|
| 405 |
+
"completion_length": 156.46875,
|
| 406 |
+
"epoch": 0.024892703862660945,
|
| 407 |
+
"grad_norm": 9.395242691040039,
|
| 408 |
+
"kl": 0.3984375,
|
| 409 |
+
"learning_rate": 9.75107296137339e-07,
|
| 410 |
+
"loss": 0.0397,
|
| 411 |
+
"reward": 0.09375,
|
| 412 |
+
"reward_mean": 0.09375,
|
| 413 |
+
"reward_std": 0.2041158676147461,
|
| 414 |
+
"rewards/accuracy_reward": 0.09375,
|
| 415 |
+
"step": 29
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"advantages": 2.9802322387695312e-08,
|
| 419 |
+
"completion_length": 148.65625,
|
| 420 |
+
"epoch": 0.02575107296137339,
|
| 421 |
+
"grad_norm": 8.077410697937012,
|
| 422 |
+
"kl": 0.2890625,
|
| 423 |
+
"learning_rate": 9.742489270386267e-07,
|
| 424 |
+
"loss": 0.0289,
|
| 425 |
+
"reward": 0.28125,
|
| 426 |
+
"reward_mean": 0.28125,
|
| 427 |
+
"reward_std": 0.4628904461860657,
|
| 428 |
+
"rewards/accuracy_reward": 0.28125,
|
| 429 |
+
"step": 30
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"advantages": 1.6763806343078613e-08,
|
| 433 |
+
"completion_length": 137.3125,
|
| 434 |
+
"epoch": 0.026609442060085836,
|
| 435 |
+
"grad_norm": 8.573564529418945,
|
| 436 |
+
"kl": 0.263671875,
|
| 437 |
+
"learning_rate": 9.733905579399142e-07,
|
| 438 |
+
"loss": 0.0264,
|
| 439 |
+
"reward": 0.28125,
|
| 440 |
+
"reward_mean": 0.28125,
|
| 441 |
+
"reward_std": 0.378745436668396,
|
| 442 |
+
"rewards/accuracy_reward": 0.28125,
|
| 443 |
+
"step": 31
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"advantages": 2.9802322387695312e-08,
|
| 447 |
+
"completion_length": 148.25,
|
| 448 |
+
"epoch": 0.027467811158798282,
|
| 449 |
+
"grad_norm": 6.53264045715332,
|
| 450 |
+
"kl": 0.265625,
|
| 451 |
+
"learning_rate": 9.725321888412016e-07,
|
| 452 |
+
"loss": 0.0265,
|
| 453 |
+
"reward": 0.28125,
|
| 454 |
+
"reward_mean": 0.28125,
|
| 455 |
+
"reward_std": 0.4628904461860657,
|
| 456 |
+
"rewards/accuracy_reward": 0.28125,
|
| 457 |
+
"step": 32
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"advantages": 3.166496753692627e-08,
|
| 461 |
+
"completion_length": 133.0,
|
| 462 |
+
"epoch": 0.02832618025751073,
|
| 463 |
+
"grad_norm": 8.72734260559082,
|
| 464 |
+
"kl": 0.36328125,
|
| 465 |
+
"learning_rate": 9.716738197424891e-07,
|
| 466 |
+
"loss": 0.0363,
|
| 467 |
+
"reward": 0.3125,
|
| 468 |
+
"reward_mean": 0.3125,
|
| 469 |
+
"reward_std": 0.47655022144317627,
|
| 470 |
+
"rewards/accuracy_reward": 0.3125,
|
| 471 |
+
"step": 33
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"advantages": 9.313225746154785e-09,
|
| 475 |
+
"completion_length": 133.3125,
|
| 476 |
+
"epoch": 0.029184549356223177,
|
| 477 |
+
"grad_norm": 11.700161933898926,
|
| 478 |
+
"kl": 0.30859375,
|
| 479 |
+
"learning_rate": 9.708154506437768e-07,
|
| 480 |
+
"loss": 0.031,
|
| 481 |
+
"reward": 0.09375,
|
| 482 |
+
"reward_mean": 0.09375,
|
| 483 |
+
"reward_std": 0.1293872892856598,
|
| 484 |
+
"rewards/accuracy_reward": 0.09375,
|
| 485 |
+
"step": 34
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"advantages": 2.9802322387695312e-08,
|
| 489 |
+
"completion_length": 145.5625,
|
| 490 |
+
"epoch": 0.030042918454935622,
|
| 491 |
+
"grad_norm": 25.358783721923828,
|
| 492 |
+
"kl": 0.486328125,
|
| 493 |
+
"learning_rate": 9.699570815450643e-07,
|
| 494 |
+
"loss": 0.0486,
|
| 495 |
+
"reward": 0.28125,
|
| 496 |
+
"reward_mean": 0.28125,
|
| 497 |
+
"reward_std": 0.4628904461860657,
|
| 498 |
+
"rewards/accuracy_reward": 0.28125,
|
| 499 |
+
"step": 35
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"advantages": 1.862645149230957e-08,
|
| 503 |
+
"completion_length": 132.625,
|
| 504 |
+
"epoch": 0.030901287553648068,
|
| 505 |
+
"grad_norm": 13.985993385314941,
|
| 506 |
+
"kl": 0.298828125,
|
| 507 |
+
"learning_rate": 9.690987124463518e-07,
|
| 508 |
+
"loss": 0.0298,
|
| 509 |
+
"reward": 0.15625,
|
| 510 |
+
"reward_mean": 0.15625,
|
| 511 |
+
"reward_std": 0.3808925747871399,
|
| 512 |
+
"rewards/accuracy_reward": 0.15625,
|
| 513 |
+
"step": 36
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"advantages": 7.450580596923828e-09,
|
| 517 |
+
"completion_length": 160.90625,
|
| 518 |
+
"epoch": 0.03175965665236052,
|
| 519 |
+
"grad_norm": 18.302053451538086,
|
| 520 |
+
"kl": 0.447265625,
|
| 521 |
+
"learning_rate": 9.682403433476395e-07,
|
| 522 |
+
"loss": 0.0447,
|
| 523 |
+
"reward": 0.0625,
|
| 524 |
+
"reward_mean": 0.0625,
|
| 525 |
+
"reward_std": 0.1767766922712326,
|
| 526 |
+
"rewards/accuracy_reward": 0.0625,
|
| 527 |
+
"step": 37
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"advantages": 1.1175870895385742e-08,
|
| 531 |
+
"completion_length": 144.875,
|
| 532 |
+
"epoch": 0.03261802575107296,
|
| 533 |
+
"grad_norm": 4.443456172943115,
|
| 534 |
+
"kl": 0.248046875,
|
| 535 |
+
"learning_rate": 9.67381974248927e-07,
|
| 536 |
+
"loss": 0.0247,
|
| 537 |
+
"reward": 0.09375,
|
| 538 |
+
"reward_mean": 0.09375,
|
| 539 |
+
"reward_std": 0.2041158676147461,
|
| 540 |
+
"rewards/accuracy_reward": 0.09375,
|
| 541 |
+
"step": 38
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"advantages": 1.6763806343078613e-08,
|
| 545 |
+
"completion_length": 157.96875,
|
| 546 |
+
"epoch": 0.03347639484978541,
|
| 547 |
+
"grad_norm": 6.555863380432129,
|
| 548 |
+
"kl": 0.279296875,
|
| 549 |
+
"learning_rate": 9.665236051502147e-07,
|
| 550 |
+
"loss": 0.0279,
|
| 551 |
+
"reward": 0.15625,
|
| 552 |
+
"reward_mean": 0.15625,
|
| 553 |
+
"reward_std": 0.3061639666557312,
|
| 554 |
+
"rewards/accuracy_reward": 0.15625,
|
| 555 |
+
"step": 39
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"advantages": 3.725290298461914e-09,
|
| 559 |
+
"completion_length": 131.03125,
|
| 560 |
+
"epoch": 0.034334763948497854,
|
| 561 |
+
"grad_norm": 7.260156631469727,
|
| 562 |
+
"kl": 0.1865234375,
|
| 563 |
+
"learning_rate": 9.656652360515022e-07,
|
| 564 |
+
"loss": 0.0186,
|
| 565 |
+
"reward": 0.28125,
|
| 566 |
+
"reward_mean": 0.28125,
|
| 567 |
+
"reward_std": 0.35564959049224854,
|
| 568 |
+
"rewards/accuracy_reward": 0.28125,
|
| 569 |
+
"step": 40
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"advantages": 1.6763806343078613e-08,
|
| 573 |
+
"completion_length": 155.75,
|
| 574 |
+
"epoch": 0.0351931330472103,
|
| 575 |
+
"grad_norm": 9.163714408874512,
|
| 576 |
+
"kl": 0.19140625,
|
| 577 |
+
"learning_rate": 9.648068669527897e-07,
|
| 578 |
+
"loss": 0.0191,
|
| 579 |
+
"reward": 0.15625,
|
| 580 |
+
"reward_mean": 0.15625,
|
| 581 |
+
"reward_std": 0.3061639666557312,
|
| 582 |
+
"rewards/accuracy_reward": 0.15625,
|
| 583 |
+
"step": 41
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"advantages": 1.862645149230957e-08,
|
| 587 |
+
"completion_length": 153.09375,
|
| 588 |
+
"epoch": 0.036051502145922745,
|
| 589 |
+
"grad_norm": 9.94912052154541,
|
| 590 |
+
"kl": 0.345703125,
|
| 591 |
+
"learning_rate": 9.639484978540771e-07,
|
| 592 |
+
"loss": 0.0345,
|
| 593 |
+
"reward": 0.15625,
|
| 594 |
+
"reward_mean": 0.15625,
|
| 595 |
+
"reward_std": 0.3198433816432953,
|
| 596 |
+
"rewards/accuracy_reward": 0.15625,
|
| 597 |
+
"step": 42
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"advantages": 2.0489096641540527e-08,
|
| 601 |
+
"completion_length": 163.28125,
|
| 602 |
+
"epoch": 0.03690987124463519,
|
| 603 |
+
"grad_norm": 4.065970420837402,
|
| 604 |
+
"kl": 0.2119140625,
|
| 605 |
+
"learning_rate": 9.630901287553648e-07,
|
| 606 |
+
"loss": 0.0212,
|
| 607 |
+
"reward": 0.1875,
|
| 608 |
+
"reward_mean": 0.1875,
|
| 609 |
+
"reward_std": 0.3335031569004059,
|
| 610 |
+
"rewards/accuracy_reward": 0.1875,
|
| 611 |
+
"step": 43
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"advantages": 2.60770320892334e-08,
|
| 615 |
+
"completion_length": 149.03125,
|
| 616 |
+
"epoch": 0.03776824034334764,
|
| 617 |
+
"grad_norm": 6.335684776306152,
|
| 618 |
+
"kl": 0.330078125,
|
| 619 |
+
"learning_rate": 9.622317596566523e-07,
|
| 620 |
+
"loss": 0.033,
|
| 621 |
+
"reward": 0.25,
|
| 622 |
+
"reward_mean": 0.25,
|
| 623 |
+
"reward_std": 0.3745020925998688,
|
| 624 |
+
"rewards/accuracy_reward": 0.25,
|
| 625 |
+
"step": 44
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"advantages": 1.862645149230957e-08,
|
| 629 |
+
"completion_length": 168.0625,
|
| 630 |
+
"epoch": 0.03862660944206009,
|
| 631 |
+
"grad_norm": 5.854466438293457,
|
| 632 |
+
"kl": 0.224609375,
|
| 633 |
+
"learning_rate": 9.613733905579398e-07,
|
| 634 |
+
"loss": 0.0225,
|
| 635 |
+
"reward": 0.15625,
|
| 636 |
+
"reward_mean": 0.15625,
|
| 637 |
+
"reward_std": 0.3808925747871399,
|
| 638 |
+
"rewards/accuracy_reward": 0.15625,
|
| 639 |
+
"step": 45
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"advantages": 2.0489096641540527e-08,
|
| 643 |
+
"completion_length": 159.3125,
|
| 644 |
+
"epoch": 0.039484978540772535,
|
| 645 |
+
"grad_norm": 59.691341400146484,
|
| 646 |
+
"kl": 0.67578125,
|
| 647 |
+
"learning_rate": 9.605150214592275e-07,
|
| 648 |
+
"loss": 0.0677,
|
| 649 |
+
"reward": 0.1875,
|
| 650 |
+
"reward_mean": 0.1875,
|
| 651 |
+
"reward_std": 0.3945523500442505,
|
| 652 |
+
"rewards/accuracy_reward": 0.1875,
|
| 653 |
+
"step": 46
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"advantages": 2.60770320892334e-08,
|
| 657 |
+
"completion_length": 149.21875,
|
| 658 |
+
"epoch": 0.04034334763948498,
|
| 659 |
+
"grad_norm": 5.02371883392334,
|
| 660 |
+
"kl": 0.1845703125,
|
| 661 |
+
"learning_rate": 9.59656652360515e-07,
|
| 662 |
+
"loss": 0.0185,
|
| 663 |
+
"reward": 0.21875,
|
| 664 |
+
"reward_mean": 0.21875,
|
| 665 |
+
"reward_std": 0.4355708956718445,
|
| 666 |
+
"rewards/accuracy_reward": 0.21875,
|
| 667 |
+
"step": 47
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"advantages": 2.421438694000244e-08,
|
| 671 |
+
"completion_length": 167.875,
|
| 672 |
+
"epoch": 0.041201716738197426,
|
| 673 |
+
"grad_norm": 4.878015041351318,
|
| 674 |
+
"kl": 0.185546875,
|
| 675 |
+
"learning_rate": 9.587982832618025e-07,
|
| 676 |
+
"loss": 0.0185,
|
| 677 |
+
"reward": 0.21875,
|
| 678 |
+
"reward_mean": 0.21875,
|
| 679 |
+
"reward_std": 0.4218915104866028,
|
| 680 |
+
"rewards/accuracy_reward": 0.21875,
|
| 681 |
+
"step": 48
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"advantages": 2.0489096641540527e-08,
|
| 685 |
+
"completion_length": 152.96875,
|
| 686 |
+
"epoch": 0.04206008583690987,
|
| 687 |
+
"grad_norm": 5.698736667633057,
|
| 688 |
+
"kl": 0.234375,
|
| 689 |
+
"learning_rate": 9.5793991416309e-07,
|
| 690 |
+
"loss": 0.0234,
|
| 691 |
+
"reward": 0.21875,
|
| 692 |
+
"reward_mean": 0.21875,
|
| 693 |
+
"reward_std": 0.3471629321575165,
|
| 694 |
+
"rewards/accuracy_reward": 0.21875,
|
| 695 |
+
"step": 49
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"advantages": 7.450580596923828e-09,
|
| 699 |
+
"completion_length": 157.8125,
|
| 700 |
+
"epoch": 0.04291845493562232,
|
| 701 |
+
"grad_norm": 5.776604652404785,
|
| 702 |
+
"kl": 0.1474609375,
|
| 703 |
+
"learning_rate": 9.570815450643777e-07,
|
| 704 |
+
"loss": 0.0148,
|
| 705 |
+
"reward": 0.3125,
|
| 706 |
+
"reward_mean": 0.3125,
|
| 707 |
+
"reward_std": 0.3745020925998688,
|
| 708 |
+
"rewards/accuracy_reward": 0.3125,
|
| 709 |
+
"step": 50
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"advantages": 2.2351741790771484e-08,
|
| 713 |
+
"completion_length": 148.78125,
|
| 714 |
+
"epoch": 0.04377682403433476,
|
| 715 |
+
"grad_norm": 4.41421365737915,
|
| 716 |
+
"kl": 0.169921875,
|
| 717 |
+
"learning_rate": 9.562231759656652e-07,
|
| 718 |
+
"loss": 0.0169,
|
| 719 |
+
"reward": 0.21875,
|
| 720 |
+
"reward_mean": 0.21875,
|
| 721 |
+
"reward_std": 0.3608423173427582,
|
| 722 |
+
"rewards/accuracy_reward": 0.21875,
|
| 723 |
+
"step": 51
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"advantages": 1.1175870895385742e-08,
|
| 727 |
+
"completion_length": 146.90625,
|
| 728 |
+
"epoch": 0.04463519313304721,
|
| 729 |
+
"grad_norm": 4.667245864868164,
|
| 730 |
+
"kl": 0.189453125,
|
| 731 |
+
"learning_rate": 9.553648068669528e-07,
|
| 732 |
+
"loss": 0.0189,
|
| 733 |
+
"reward": 0.21875,
|
| 734 |
+
"reward_mean": 0.21875,
|
| 735 |
+
"reward_std": 0.3377464711666107,
|
| 736 |
+
"rewards/accuracy_reward": 0.21875,
|
| 737 |
+
"step": 52
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"advantages": -3.725290298461914e-09,
|
| 741 |
+
"completion_length": 158.625,
|
| 742 |
+
"epoch": 0.045493562231759654,
|
| 743 |
+
"grad_norm": 4.415360927581787,
|
| 744 |
+
"kl": 0.1259765625,
|
| 745 |
+
"learning_rate": 9.545064377682403e-07,
|
| 746 |
+
"loss": 0.0126,
|
| 747 |
+
"reward": 0.46875,
|
| 748 |
+
"reward_mean": 0.46875,
|
| 749 |
+
"reward_std": 0.3808925747871399,
|
| 750 |
+
"rewards/accuracy_reward": 0.46875,
|
| 751 |
+
"step": 53
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"advantages": 1.4901161193847656e-08,
|
| 755 |
+
"completion_length": 155.65625,
|
| 756 |
+
"epoch": 0.0463519313304721,
|
| 757 |
+
"grad_norm": 12.489053726196289,
|
| 758 |
+
"kl": 0.37109375,
|
| 759 |
+
"learning_rate": 9.536480686695278e-07,
|
| 760 |
+
"loss": 0.0371,
|
| 761 |
+
"reward": 0.125,
|
| 762 |
+
"reward_mean": 0.125,
|
| 763 |
+
"reward_std": 0.2925041913986206,
|
| 764 |
+
"rewards/accuracy_reward": 0.125,
|
| 765 |
+
"step": 54
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"advantages": 2.9802322387695312e-08,
|
| 769 |
+
"completion_length": 172.9375,
|
| 770 |
+
"epoch": 0.04721030042918455,
|
| 771 |
+
"grad_norm": 5.111673831939697,
|
| 772 |
+
"kl": 0.173828125,
|
| 773 |
+
"learning_rate": 9.527896995708154e-07,
|
| 774 |
+
"loss": 0.0174,
|
| 775 |
+
"reward": 0.25,
|
| 776 |
+
"reward_mean": 0.25,
|
| 777 |
+
"reward_std": 0.4629100561141968,
|
| 778 |
+
"rewards/accuracy_reward": 0.25,
|
| 779 |
+
"step": 55
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"advantages": 2.9802322387695312e-08,
|
| 783 |
+
"completion_length": 153.4375,
|
| 784 |
+
"epoch": 0.048068669527897,
|
| 785 |
+
"grad_norm": 149.73927307128906,
|
| 786 |
+
"kl": 2.0,
|
| 787 |
+
"learning_rate": 9.519313304721029e-07,
|
| 788 |
+
"loss": 0.2008,
|
| 789 |
+
"reward": 0.28125,
|
| 790 |
+
"reward_mean": 0.28125,
|
| 791 |
+
"reward_std": 0.4628904461860657,
|
| 792 |
+
"rewards/accuracy_reward": 0.28125,
|
| 793 |
+
"step": 56
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"advantages": 1.4901161193847656e-08,
|
| 797 |
+
"completion_length": 133.0625,
|
| 798 |
+
"epoch": 0.048927038626609444,
|
| 799 |
+
"grad_norm": 13.399458885192871,
|
| 800 |
+
"kl": 0.37109375,
|
| 801 |
+
"learning_rate": 9.510729613733906e-07,
|
| 802 |
+
"loss": 0.0371,
|
| 803 |
+
"reward": 0.15625,
|
| 804 |
+
"reward_mean": 0.15625,
|
| 805 |
+
"reward_std": 0.3061639964580536,
|
| 806 |
+
"rewards/accuracy_reward": 0.15625,
|
| 807 |
+
"step": 57
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"advantages": 1.6763806343078613e-08,
|
| 811 |
+
"completion_length": 163.125,
|
| 812 |
+
"epoch": 0.04978540772532189,
|
| 813 |
+
"grad_norm": 6.9010210037231445,
|
| 814 |
+
"kl": 0.294921875,
|
| 815 |
+
"learning_rate": 9.502145922746781e-07,
|
| 816 |
+
"loss": 0.0295,
|
| 817 |
+
"reward": 0.15625,
|
| 818 |
+
"reward_mean": 0.15625,
|
| 819 |
+
"reward_std": 0.3061639964580536,
|
| 820 |
+
"rewards/accuracy_reward": 0.15625,
|
| 821 |
+
"step": 58
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"advantages": 1.6763806343078613e-08,
|
| 825 |
+
"completion_length": 146.90625,
|
| 826 |
+
"epoch": 0.050643776824034335,
|
| 827 |
+
"grad_norm": 6.625538349151611,
|
| 828 |
+
"kl": 0.166015625,
|
| 829 |
+
"learning_rate": 9.493562231759657e-07,
|
| 830 |
+
"loss": 0.0166,
|
| 831 |
+
"reward": 0.28125,
|
| 832 |
+
"reward_mean": 0.28125,
|
| 833 |
+
"reward_std": 0.4397946000099182,
|
| 834 |
+
"rewards/accuracy_reward": 0.28125,
|
| 835 |
+
"step": 59
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"advantages": 3.725290298461914e-09,
|
| 839 |
+
"completion_length": 151.03125,
|
| 840 |
+
"epoch": 0.05150214592274678,
|
| 841 |
+
"grad_norm": 9.018912315368652,
|
| 842 |
+
"kl": 0.169921875,
|
| 843 |
+
"learning_rate": 9.484978540772532e-07,
|
| 844 |
+
"loss": 0.017,
|
| 845 |
+
"reward": 0.28125,
|
| 846 |
+
"reward_mean": 0.28125,
|
| 847 |
+
"reward_std": 0.3471629321575165,
|
| 848 |
+
"rewards/accuracy_reward": 0.28125,
|
| 849 |
+
"step": 60
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"advantages": 1.30385160446167e-08,
|
| 853 |
+
"completion_length": 121.25,
|
| 854 |
+
"epoch": 0.05236051502145923,
|
| 855 |
+
"grad_norm": 24.219348907470703,
|
| 856 |
+
"kl": 0.47265625,
|
| 857 |
+
"learning_rate": 9.476394849785408e-07,
|
| 858 |
+
"loss": 0.0473,
|
| 859 |
+
"reward": 0.125,
|
| 860 |
+
"reward_mean": 0.125,
|
| 861 |
+
"reward_std": 0.2177756428718567,
|
| 862 |
+
"rewards/accuracy_reward": 0.125,
|
| 863 |
+
"step": 61
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"advantages": 1.4901161193847656e-08,
|
| 867 |
+
"completion_length": 142.5625,
|
| 868 |
+
"epoch": 0.05321888412017167,
|
| 869 |
+
"grad_norm": 5.040563106536865,
|
| 870 |
+
"kl": 0.201171875,
|
| 871 |
+
"learning_rate": 9.467811158798282e-07,
|
| 872 |
+
"loss": 0.0201,
|
| 873 |
+
"reward": 0.125,
|
| 874 |
+
"reward_mean": 0.125,
|
| 875 |
+
"reward_std": 0.2925041913986206,
|
| 876 |
+
"rewards/accuracy_reward": 0.125,
|
| 877 |
+
"step": 62
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"advantages": -1.862645149230957e-09,
|
| 881 |
+
"completion_length": 145.53125,
|
| 882 |
+
"epoch": 0.05407725321888412,
|
| 883 |
+
"grad_norm": 9.56372356414795,
|
| 884 |
+
"kl": 0.279296875,
|
| 885 |
+
"learning_rate": 9.459227467811158e-07,
|
| 886 |
+
"loss": 0.0279,
|
| 887 |
+
"reward": 0.4375,
|
| 888 |
+
"reward_mean": 0.4375,
|
| 889 |
+
"reward_std": 0.49022960662841797,
|
| 890 |
+
"rewards/accuracy_reward": 0.4375,
|
| 891 |
+
"step": 63
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"advantages": 7.450580596923828e-09,
|
| 895 |
+
"completion_length": 110.75,
|
| 896 |
+
"epoch": 0.054935622317596564,
|
| 897 |
+
"grad_norm": 5.647745132446289,
|
| 898 |
+
"kl": 0.1884765625,
|
| 899 |
+
"learning_rate": 9.450643776824034e-07,
|
| 900 |
+
"loss": 0.0189,
|
| 901 |
+
"reward": 0.3125,
|
| 902 |
+
"reward_mean": 0.3125,
|
| 903 |
+
"reward_std": 0.4082317352294922,
|
| 904 |
+
"rewards/accuracy_reward": 0.3125,
|
| 905 |
+
"step": 64
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"advantages": -1.30385160446167e-08,
|
| 909 |
+
"completion_length": 152.0,
|
| 910 |
+
"epoch": 0.055793991416309016,
|
| 911 |
+
"grad_norm": 5.315371513366699,
|
| 912 |
+
"kl": 0.17578125,
|
| 913 |
+
"learning_rate": 9.442060085836909e-07,
|
| 914 |
+
"loss": 0.0176,
|
| 915 |
+
"reward": 0.46875,
|
| 916 |
+
"reward_mean": 0.46875,
|
| 917 |
+
"reward_std": 0.4807935357093811,
|
| 918 |
+
"rewards/accuracy_reward": 0.46875,
|
| 919 |
+
"step": 65
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"advantages": 1.6763806343078613e-08,
|
| 923 |
+
"completion_length": 117.6875,
|
| 924 |
+
"epoch": 0.05665236051502146,
|
| 925 |
+
"grad_norm": 4.9794840812683105,
|
| 926 |
+
"kl": 0.2275390625,
|
| 927 |
+
"learning_rate": 9.433476394849785e-07,
|
| 928 |
+
"loss": 0.0228,
|
| 929 |
+
"reward": 0.28125,
|
| 930 |
+
"reward_mean": 0.28125,
|
| 931 |
+
"reward_std": 0.378745436668396,
|
| 932 |
+
"rewards/accuracy_reward": 0.28125,
|
| 933 |
+
"step": 66
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"advantages": 2.9802322387695312e-08,
|
| 937 |
+
"completion_length": 140.15625,
|
| 938 |
+
"epoch": 0.05751072961373391,
|
| 939 |
+
"grad_norm": 4.917365074157715,
|
| 940 |
+
"kl": 0.171875,
|
| 941 |
+
"learning_rate": 9.42489270386266e-07,
|
| 942 |
+
"loss": 0.0172,
|
| 943 |
+
"reward": 0.28125,
|
| 944 |
+
"reward_mean": 0.28125,
|
| 945 |
+
"reward_std": 0.4628904461860657,
|
| 946 |
+
"rewards/accuracy_reward": 0.28125,
|
| 947 |
+
"step": 67
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"advantages": 1.1175870895385742e-08,
|
| 951 |
+
"completion_length": 134.09375,
|
| 952 |
+
"epoch": 0.05836909871244635,
|
| 953 |
+
"grad_norm": 4.92598819732666,
|
| 954 |
+
"kl": 0.1640625,
|
| 955 |
+
"learning_rate": 9.416309012875536e-07,
|
| 956 |
+
"loss": 0.0164,
|
| 957 |
+
"reward": 0.34375,
|
| 958 |
+
"reward_mean": 0.34375,
|
| 959 |
+
"reward_std": 0.4628904461860657,
|
| 960 |
+
"rewards/accuracy_reward": 0.34375,
|
| 961 |
+
"step": 68
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"advantages": 1.4901161193847656e-08,
|
| 965 |
+
"completion_length": 134.0625,
|
| 966 |
+
"epoch": 0.0592274678111588,
|
| 967 |
+
"grad_norm": 11.736459732055664,
|
| 968 |
+
"kl": 0.44921875,
|
| 969 |
+
"learning_rate": 9.407725321888411e-07,
|
| 970 |
+
"loss": 0.0449,
|
| 971 |
+
"reward": 0.25,
|
| 972 |
+
"reward_mean": 0.25,
|
| 973 |
+
"reward_std": 0.3650856614112854,
|
| 974 |
+
"rewards/accuracy_reward": 0.25,
|
| 975 |
+
"step": 69
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"advantages": 2.2351741790771484e-08,
|
| 979 |
+
"completion_length": 131.5,
|
| 980 |
+
"epoch": 0.060085836909871244,
|
| 981 |
+
"grad_norm": 21.64668083190918,
|
| 982 |
+
"kl": 0.47265625,
|
| 983 |
+
"learning_rate": 9.399141630901288e-07,
|
| 984 |
+
"loss": 0.0474,
|
| 985 |
+
"reward": 0.21875,
|
| 986 |
+
"reward_mean": 0.21875,
|
| 987 |
+
"reward_std": 0.4218915104866028,
|
| 988 |
+
"rewards/accuracy_reward": 0.21875,
|
| 989 |
+
"step": 70
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"advantages": 2.0489096641540527e-08,
|
| 993 |
+
"completion_length": 137.1875,
|
| 994 |
+
"epoch": 0.06094420600858369,
|
| 995 |
+
"grad_norm": 4.1953444480896,
|
| 996 |
+
"kl": 0.1826171875,
|
| 997 |
+
"learning_rate": 9.390557939914163e-07,
|
| 998 |
+
"loss": 0.0182,
|
| 999 |
+
"reward": 0.1875,
|
| 1000 |
+
"reward_mean": 0.1875,
|
| 1001 |
+
"reward_std": 0.3335031569004059,
|
| 1002 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1003 |
+
"step": 71
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"advantages": 3.725290298461914e-09,
|
| 1007 |
+
"completion_length": 138.46875,
|
| 1008 |
+
"epoch": 0.061802575107296136,
|
| 1009 |
+
"grad_norm": 54.577999114990234,
|
| 1010 |
+
"kl": 0.73828125,
|
| 1011 |
+
"learning_rate": 9.381974248927038e-07,
|
| 1012 |
+
"loss": 0.0742,
|
| 1013 |
+
"reward": 0.40625,
|
| 1014 |
+
"reward_mean": 0.40625,
|
| 1015 |
+
"reward_std": 0.4807935357093811,
|
| 1016 |
+
"rewards/accuracy_reward": 0.40625,
|
| 1017 |
+
"step": 72
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"advantages": 0.0,
|
| 1021 |
+
"completion_length": 148.0,
|
| 1022 |
+
"epoch": 0.06266094420600858,
|
| 1023 |
+
"grad_norm": 24.432819366455078,
|
| 1024 |
+
"kl": 0.1826171875,
|
| 1025 |
+
"learning_rate": 9.373390557939914e-07,
|
| 1026 |
+
"loss": 0.0183,
|
| 1027 |
+
"reward": 0.25,
|
| 1028 |
+
"reward_mean": 0.25,
|
| 1029 |
+
"reward_std": 0.2587745785713196,
|
| 1030 |
+
"rewards/accuracy_reward": 0.25,
|
| 1031 |
+
"step": 73
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"advantages": 2.421438694000244e-08,
|
| 1035 |
+
"completion_length": 145.84375,
|
| 1036 |
+
"epoch": 0.06351931330472103,
|
| 1037 |
+
"grad_norm": 5.361104965209961,
|
| 1038 |
+
"kl": 0.150390625,
|
| 1039 |
+
"learning_rate": 9.364806866952789e-07,
|
| 1040 |
+
"loss": 0.015,
|
| 1041 |
+
"reward": 0.21875,
|
| 1042 |
+
"reward_mean": 0.21875,
|
| 1043 |
+
"reward_std": 0.4218915104866028,
|
| 1044 |
+
"rewards/accuracy_reward": 0.21875,
|
| 1045 |
+
"step": 74
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"advantages": 1.862645149230957e-08,
|
| 1049 |
+
"completion_length": 148.625,
|
| 1050 |
+
"epoch": 0.06437768240343347,
|
| 1051 |
+
"grad_norm": 4.662086009979248,
|
| 1052 |
+
"kl": 0.1630859375,
|
| 1053 |
+
"learning_rate": 9.356223175965665e-07,
|
| 1054 |
+
"loss": 0.0163,
|
| 1055 |
+
"reward": 0.28125,
|
| 1056 |
+
"reward_mean": 0.28125,
|
| 1057 |
+
"reward_std": 0.4534739851951599,
|
| 1058 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1059 |
+
"step": 75
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"advantages": 1.30385160446167e-08,
|
| 1063 |
+
"completion_length": 138.375,
|
| 1064 |
+
"epoch": 0.06523605150214593,
|
| 1065 |
+
"grad_norm": 17.23464012145996,
|
| 1066 |
+
"kl": 0.404296875,
|
| 1067 |
+
"learning_rate": 9.34763948497854e-07,
|
| 1068 |
+
"loss": 0.0406,
|
| 1069 |
+
"reward": 0.125,
|
| 1070 |
+
"reward_mean": 0.125,
|
| 1071 |
+
"reward_std": 0.2177756428718567,
|
| 1072 |
+
"rewards/accuracy_reward": 0.125,
|
| 1073 |
+
"step": 76
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"advantages": 3.166496753692627e-08,
|
| 1077 |
+
"completion_length": 161.4375,
|
| 1078 |
+
"epoch": 0.06609442060085836,
|
| 1079 |
+
"grad_norm": 4.420433521270752,
|
| 1080 |
+
"kl": 0.162109375,
|
| 1081 |
+
"learning_rate": 9.339055793991416e-07,
|
| 1082 |
+
"loss": 0.0162,
|
| 1083 |
+
"reward": 0.3125,
|
| 1084 |
+
"reward_mean": 0.3125,
|
| 1085 |
+
"reward_std": 0.49022960662841797,
|
| 1086 |
+
"rewards/accuracy_reward": 0.3125,
|
| 1087 |
+
"step": 77
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"advantages": 2.2351741790771484e-08,
|
| 1091 |
+
"completion_length": 145.125,
|
| 1092 |
+
"epoch": 0.06695278969957082,
|
| 1093 |
+
"grad_norm": 11.806068420410156,
|
| 1094 |
+
"kl": 0.294921875,
|
| 1095 |
+
"learning_rate": 9.330472103004291e-07,
|
| 1096 |
+
"loss": 0.0294,
|
| 1097 |
+
"reward": 0.1875,
|
| 1098 |
+
"reward_mean": 0.1875,
|
| 1099 |
+
"reward_std": 0.4082317352294922,
|
| 1100 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1101 |
+
"step": 78
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"advantages": 9.313225746154785e-09,
|
| 1105 |
+
"completion_length": 146.21875,
|
| 1106 |
+
"epoch": 0.06781115879828326,
|
| 1107 |
+
"grad_norm": 5.149102210998535,
|
| 1108 |
+
"kl": 0.201171875,
|
| 1109 |
+
"learning_rate": 9.321888412017167e-07,
|
| 1110 |
+
"loss": 0.0201,
|
| 1111 |
+
"reward": 0.34375,
|
| 1112 |
+
"reward_mean": 0.34375,
|
| 1113 |
+
"reward_std": 0.3966485261917114,
|
| 1114 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1115 |
+
"step": 79
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"advantages": 1.6763806343078613e-08,
|
| 1119 |
+
"completion_length": 133.0,
|
| 1120 |
+
"epoch": 0.06866952789699571,
|
| 1121 |
+
"grad_norm": 4.339179992675781,
|
| 1122 |
+
"kl": 0.232421875,
|
| 1123 |
+
"learning_rate": 9.313304721030042e-07,
|
| 1124 |
+
"loss": 0.0233,
|
| 1125 |
+
"reward": 0.15625,
|
| 1126 |
+
"reward_mean": 0.15625,
|
| 1127 |
+
"reward_std": 0.24511480331420898,
|
| 1128 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1129 |
+
"step": 80
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"advantages": 7.450580596923828e-09,
|
| 1133 |
+
"completion_length": 150.8125,
|
| 1134 |
+
"epoch": 0.06952789699570816,
|
| 1135 |
+
"grad_norm": 7.417867183685303,
|
| 1136 |
+
"kl": 0.166015625,
|
| 1137 |
+
"learning_rate": 9.304721030042918e-07,
|
| 1138 |
+
"loss": 0.0166,
|
| 1139 |
+
"reward": 0.28125,
|
| 1140 |
+
"reward_mean": 0.28125,
|
| 1141 |
+
"reward_std": 0.3608423173427582,
|
| 1142 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1143 |
+
"step": 81
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"advantages": 1.862645149230957e-08,
|
| 1147 |
+
"completion_length": 150.1875,
|
| 1148 |
+
"epoch": 0.0703862660944206,
|
| 1149 |
+
"grad_norm": 4.655648708343506,
|
| 1150 |
+
"kl": 0.1748046875,
|
| 1151 |
+
"learning_rate": 9.296137339055793e-07,
|
| 1152 |
+
"loss": 0.0175,
|
| 1153 |
+
"reward": 0.15625,
|
| 1154 |
+
"reward_mean": 0.15625,
|
| 1155 |
+
"reward_std": 0.3198433816432953,
|
| 1156 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1157 |
+
"step": 82
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"advantages": 1.30385160446167e-08,
|
| 1161 |
+
"completion_length": 144.1875,
|
| 1162 |
+
"epoch": 0.07124463519313305,
|
| 1163 |
+
"grad_norm": 6.301512241363525,
|
| 1164 |
+
"kl": 0.140625,
|
| 1165 |
+
"learning_rate": 9.287553648068669e-07,
|
| 1166 |
+
"loss": 0.014,
|
| 1167 |
+
"reward": 0.375,
|
| 1168 |
+
"reward_mean": 0.375,
|
| 1169 |
+
"reward_std": 0.48503684997558594,
|
| 1170 |
+
"rewards/accuracy_reward": 0.375,
|
| 1171 |
+
"step": 83
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"advantages": 7.450580596923828e-09,
|
| 1175 |
+
"completion_length": 155.75,
|
| 1176 |
+
"epoch": 0.07210300429184549,
|
| 1177 |
+
"grad_norm": 4.552245616912842,
|
| 1178 |
+
"kl": 0.1494140625,
|
| 1179 |
+
"learning_rate": 9.278969957081545e-07,
|
| 1180 |
+
"loss": 0.015,
|
| 1181 |
+
"reward": 0.46875,
|
| 1182 |
+
"reward_mean": 0.46875,
|
| 1183 |
+
"reward_std": 0.5302791595458984,
|
| 1184 |
+
"rewards/accuracy_reward": 0.46875,
|
| 1185 |
+
"step": 84
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"advantages": 1.862645149230957e-08,
|
| 1189 |
+
"completion_length": 163.59375,
|
| 1190 |
+
"epoch": 0.07296137339055794,
|
| 1191 |
+
"grad_norm": 5.0817060470581055,
|
| 1192 |
+
"kl": 0.1953125,
|
| 1193 |
+
"learning_rate": 9.27038626609442e-07,
|
| 1194 |
+
"loss": 0.0195,
|
| 1195 |
+
"reward": 0.28125,
|
| 1196 |
+
"reward_mean": 0.28125,
|
| 1197 |
+
"reward_std": 0.4534739851951599,
|
| 1198 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1199 |
+
"step": 85
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"advantages": 7.450580596923828e-09,
|
| 1203 |
+
"completion_length": 167.5,
|
| 1204 |
+
"epoch": 0.07381974248927038,
|
| 1205 |
+
"grad_norm": 3.2791318893432617,
|
| 1206 |
+
"kl": 0.16796875,
|
| 1207 |
+
"learning_rate": 9.261802575107296e-07,
|
| 1208 |
+
"loss": 0.0168,
|
| 1209 |
+
"reward": 0.0625,
|
| 1210 |
+
"reward_mean": 0.0625,
|
| 1211 |
+
"reward_std": 0.1767766922712326,
|
| 1212 |
+
"rewards/accuracy_reward": 0.0625,
|
| 1213 |
+
"step": 86
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"advantages": 5.587935447692871e-09,
|
| 1217 |
+
"completion_length": 152.03125,
|
| 1218 |
+
"epoch": 0.07467811158798283,
|
| 1219 |
+
"grad_norm": 5.571934700012207,
|
| 1220 |
+
"kl": 0.2421875,
|
| 1221 |
+
"learning_rate": 9.253218884120171e-07,
|
| 1222 |
+
"loss": 0.0242,
|
| 1223 |
+
"reward": 0.28125,
|
| 1224 |
+
"reward_mean": 0.28125,
|
| 1225 |
+
"reward_std": 0.3608423173427582,
|
| 1226 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1227 |
+
"step": 87
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"advantages": 1.862645149230957e-08,
|
| 1231 |
+
"completion_length": 171.15625,
|
| 1232 |
+
"epoch": 0.07553648068669527,
|
| 1233 |
+
"grad_norm": 4.619121074676514,
|
| 1234 |
+
"kl": 0.2109375,
|
| 1235 |
+
"learning_rate": 9.244635193133047e-07,
|
| 1236 |
+
"loss": 0.0211,
|
| 1237 |
+
"reward": 0.15625,
|
| 1238 |
+
"reward_mean": 0.15625,
|
| 1239 |
+
"reward_std": 0.3808925747871399,
|
| 1240 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1241 |
+
"step": 88
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"advantages": 3.725290298461914e-09,
|
| 1245 |
+
"completion_length": 153.03125,
|
| 1246 |
+
"epoch": 0.07639484978540773,
|
| 1247 |
+
"grad_norm": 4.043124198913574,
|
| 1248 |
+
"kl": 0.13671875,
|
| 1249 |
+
"learning_rate": 9.236051502145923e-07,
|
| 1250 |
+
"loss": 0.0137,
|
| 1251 |
+
"reward": 0.28125,
|
| 1252 |
+
"reward_mean": 0.28125,
|
| 1253 |
+
"reward_std": 0.3471629321575165,
|
| 1254 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1255 |
+
"step": 89
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"advantages": 3.725290298461914e-09,
|
| 1259 |
+
"completion_length": 147.53125,
|
| 1260 |
+
"epoch": 0.07725321888412018,
|
| 1261 |
+
"grad_norm": 2.962092638015747,
|
| 1262 |
+
"kl": 0.1513671875,
|
| 1263 |
+
"learning_rate": 9.227467811158798e-07,
|
| 1264 |
+
"loss": 0.0152,
|
| 1265 |
+
"reward": 0.15625,
|
| 1266 |
+
"reward_mean": 0.15625,
|
| 1267 |
+
"reward_std": 0.22201895713806152,
|
| 1268 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1269 |
+
"step": 90
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"advantages": 3.3527612686157227e-08,
|
| 1273 |
+
"completion_length": 176.9375,
|
| 1274 |
+
"epoch": 0.07811158798283262,
|
| 1275 |
+
"grad_norm": 5.911281585693359,
|
| 1276 |
+
"kl": 0.1484375,
|
| 1277 |
+
"learning_rate": 9.218884120171674e-07,
|
| 1278 |
+
"loss": 0.0148,
|
| 1279 |
+
"reward": 0.3125,
|
| 1280 |
+
"reward_mean": 0.3125,
|
| 1281 |
+
"reward_std": 0.49022960662841797,
|
| 1282 |
+
"rewards/accuracy_reward": 0.3125,
|
| 1283 |
+
"step": 91
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"advantages": 0.0,
|
| 1287 |
+
"completion_length": 160.875,
|
| 1288 |
+
"epoch": 0.07896995708154507,
|
| 1289 |
+
"grad_norm": 3.9937198162078857,
|
| 1290 |
+
"kl": 0.173828125,
|
| 1291 |
+
"learning_rate": 9.210300429184548e-07,
|
| 1292 |
+
"loss": 0.0174,
|
| 1293 |
+
"reward": 0.25,
|
| 1294 |
+
"reward_mean": 0.25,
|
| 1295 |
+
"reward_std": 0.2925041913986206,
|
| 1296 |
+
"rewards/accuracy_reward": 0.25,
|
| 1297 |
+
"step": 92
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"advantages": 1.1175870895385742e-08,
|
| 1301 |
+
"completion_length": 167.0,
|
| 1302 |
+
"epoch": 0.07982832618025751,
|
| 1303 |
+
"grad_norm": 3.8715927600860596,
|
| 1304 |
+
"kl": 0.134765625,
|
| 1305 |
+
"learning_rate": 9.201716738197424e-07,
|
| 1306 |
+
"loss": 0.0135,
|
| 1307 |
+
"reward": 0.25,
|
| 1308 |
+
"reward_mean": 0.25,
|
| 1309 |
+
"reward_std": 0.3514062464237213,
|
| 1310 |
+
"rewards/accuracy_reward": 0.25,
|
| 1311 |
+
"step": 93
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"advantages": 3.166496753692627e-08,
|
| 1315 |
+
"completion_length": 155.53125,
|
| 1316 |
+
"epoch": 0.08068669527896996,
|
| 1317 |
+
"grad_norm": 4.316589832305908,
|
| 1318 |
+
"kl": 0.1640625,
|
| 1319 |
+
"learning_rate": 9.193133047210299e-07,
|
| 1320 |
+
"loss": 0.0164,
|
| 1321 |
+
"reward": 0.28125,
|
| 1322 |
+
"reward_mean": 0.28125,
|
| 1323 |
+
"reward_std": 0.4765698313713074,
|
| 1324 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1325 |
+
"step": 94
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"advantages": 2.60770320892334e-08,
|
| 1329 |
+
"completion_length": 158.15625,
|
| 1330 |
+
"epoch": 0.0815450643776824,
|
| 1331 |
+
"grad_norm": 4.352808952331543,
|
| 1332 |
+
"kl": 0.1416015625,
|
| 1333 |
+
"learning_rate": 9.184549356223176e-07,
|
| 1334 |
+
"loss": 0.0142,
|
| 1335 |
+
"reward": 0.25,
|
| 1336 |
+
"reward_mean": 0.25,
|
| 1337 |
+
"reward_std": 0.4355512857437134,
|
| 1338 |
+
"rewards/accuracy_reward": 0.25,
|
| 1339 |
+
"step": 95
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"advantages": 1.6763806343078613e-08,
|
| 1343 |
+
"completion_length": 142.0625,
|
| 1344 |
+
"epoch": 0.08240343347639485,
|
| 1345 |
+
"grad_norm": 6.171362400054932,
|
| 1346 |
+
"kl": 0.1787109375,
|
| 1347 |
+
"learning_rate": 9.175965665236051e-07,
|
| 1348 |
+
"loss": 0.0178,
|
| 1349 |
+
"reward": 0.15625,
|
| 1350 |
+
"reward_mean": 0.15625,
|
| 1351 |
+
"reward_std": 0.3061639666557312,
|
| 1352 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1353 |
+
"step": 96
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"advantages": 1.30385160446167e-08,
|
| 1357 |
+
"completion_length": 163.78125,
|
| 1358 |
+
"epoch": 0.08326180257510729,
|
| 1359 |
+
"grad_norm": 3.2692599296569824,
|
| 1360 |
+
"kl": 0.1796875,
|
| 1361 |
+
"learning_rate": 9.167381974248927e-07,
|
| 1362 |
+
"loss": 0.0179,
|
| 1363 |
+
"reward": 0.125,
|
| 1364 |
+
"reward_mean": 0.125,
|
| 1365 |
+
"reward_std": 0.2177756428718567,
|
| 1366 |
+
"rewards/accuracy_reward": 0.125,
|
| 1367 |
+
"step": 97
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"advantages": 1.30385160446167e-08,
|
| 1371 |
+
"completion_length": 158.0625,
|
| 1372 |
+
"epoch": 0.08412017167381974,
|
| 1373 |
+
"grad_norm": 3.954564094543457,
|
| 1374 |
+
"kl": 0.123046875,
|
| 1375 |
+
"learning_rate": 9.158798283261803e-07,
|
| 1376 |
+
"loss": 0.0123,
|
| 1377 |
+
"reward": 0.25,
|
| 1378 |
+
"reward_mean": 0.25,
|
| 1379 |
+
"reward_std": 0.3514062464237213,
|
| 1380 |
+
"rewards/accuracy_reward": 0.25,
|
| 1381 |
+
"step": 98
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"advantages": 0.0,
|
| 1385 |
+
"completion_length": 140.09375,
|
| 1386 |
+
"epoch": 0.08497854077253218,
|
| 1387 |
+
"grad_norm": 4.733702659606934,
|
| 1388 |
+
"kl": 0.166015625,
|
| 1389 |
+
"learning_rate": 9.150214592274678e-07,
|
| 1390 |
+
"loss": 0.0166,
|
| 1391 |
+
"reward": 0.25,
|
| 1392 |
+
"reward_mean": 0.25,
|
| 1393 |
+
"reward_std": 0.292504221200943,
|
| 1394 |
+
"rewards/accuracy_reward": 0.25,
|
| 1395 |
+
"step": 99
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"advantages": 1.6763806343078613e-08,
|
| 1399 |
+
"completion_length": 139.0625,
|
| 1400 |
+
"epoch": 0.08583690987124463,
|
| 1401 |
+
"grad_norm": 4.053472995758057,
|
| 1402 |
+
"kl": 0.15625,
|
| 1403 |
+
"learning_rate": 9.141630901287554e-07,
|
| 1404 |
+
"loss": 0.0157,
|
| 1405 |
+
"reward": 0.15625,
|
| 1406 |
+
"reward_mean": 0.15625,
|
| 1407 |
+
"reward_std": 0.3061639666557312,
|
| 1408 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1409 |
+
"step": 100
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"advantages": 2.421438694000244e-08,
|
| 1413 |
+
"completion_length": 135.96875,
|
| 1414 |
+
"epoch": 0.08669527896995709,
|
| 1415 |
+
"grad_norm": 5.235788822174072,
|
| 1416 |
+
"kl": 0.18359375,
|
| 1417 |
+
"learning_rate": 9.133047210300429e-07,
|
| 1418 |
+
"loss": 0.0184,
|
| 1419 |
+
"reward": 0.34375,
|
| 1420 |
+
"reward_mean": 0.34375,
|
| 1421 |
+
"reward_std": 0.4944729208946228,
|
| 1422 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1423 |
+
"step": 101
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"advantages": 1.862645149230957e-09,
|
| 1427 |
+
"completion_length": 164.1875,
|
| 1428 |
+
"epoch": 0.08755364806866953,
|
| 1429 |
+
"grad_norm": 4.011264801025391,
|
| 1430 |
+
"kl": 0.158203125,
|
| 1431 |
+
"learning_rate": 9.124463519313305e-07,
|
| 1432 |
+
"loss": 0.0158,
|
| 1433 |
+
"reward": 0.25,
|
| 1434 |
+
"reward_mean": 0.25,
|
| 1435 |
+
"reward_std": 0.3335031569004059,
|
| 1436 |
+
"rewards/accuracy_reward": 0.25,
|
| 1437 |
+
"step": 102
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"advantages": 1.30385160446167e-08,
|
| 1441 |
+
"completion_length": 141.59375,
|
| 1442 |
+
"epoch": 0.08841201716738198,
|
| 1443 |
+
"grad_norm": 4.756768226623535,
|
| 1444 |
+
"kl": 0.12109375,
|
| 1445 |
+
"learning_rate": 9.115879828326179e-07,
|
| 1446 |
+
"loss": 0.0121,
|
| 1447 |
+
"reward": 0.375,
|
| 1448 |
+
"reward_mean": 0.375,
|
| 1449 |
+
"reward_std": 0.4492306709289551,
|
| 1450 |
+
"rewards/accuracy_reward": 0.375,
|
| 1451 |
+
"step": 103
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"advantages": 2.9802322387695312e-08,
|
| 1455 |
+
"completion_length": 157.4375,
|
| 1456 |
+
"epoch": 0.08927038626609442,
|
| 1457 |
+
"grad_norm": 4.457541465759277,
|
| 1458 |
+
"kl": 0.1767578125,
|
| 1459 |
+
"learning_rate": 9.107296137339055e-07,
|
| 1460 |
+
"loss": 0.0177,
|
| 1461 |
+
"reward": 0.28125,
|
| 1462 |
+
"reward_mean": 0.28125,
|
| 1463 |
+
"reward_std": 0.4628904461860657,
|
| 1464 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1465 |
+
"step": 104
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"advantages": 1.4901161193847656e-08,
|
| 1469 |
+
"completion_length": 174.65625,
|
| 1470 |
+
"epoch": 0.09012875536480687,
|
| 1471 |
+
"grad_norm": 3.6339664459228516,
|
| 1472 |
+
"kl": 0.1484375,
|
| 1473 |
+
"learning_rate": 9.09871244635193e-07,
|
| 1474 |
+
"loss": 0.0148,
|
| 1475 |
+
"reward": 0.125,
|
| 1476 |
+
"reward_mean": 0.125,
|
| 1477 |
+
"reward_std": 0.292504221200943,
|
| 1478 |
+
"rewards/accuracy_reward": 0.125,
|
| 1479 |
+
"step": 105
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"advantages": 2.0489096641540527e-08,
|
| 1483 |
+
"completion_length": 160.625,
|
| 1484 |
+
"epoch": 0.09098712446351931,
|
| 1485 |
+
"grad_norm": 5.5795159339904785,
|
| 1486 |
+
"kl": 0.1474609375,
|
| 1487 |
+
"learning_rate": 9.090128755364806e-07,
|
| 1488 |
+
"loss": 0.0147,
|
| 1489 |
+
"reward": 0.1875,
|
| 1490 |
+
"reward_mean": 0.1875,
|
| 1491 |
+
"reward_std": 0.3945523500442505,
|
| 1492 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1493 |
+
"step": 106
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"advantages": -1.862645149230957e-09,
|
| 1497 |
+
"completion_length": 175.09375,
|
| 1498 |
+
"epoch": 0.09184549356223176,
|
| 1499 |
+
"grad_norm": 4.58608341217041,
|
| 1500 |
+
"kl": 0.20703125,
|
| 1501 |
+
"learning_rate": 9.081545064377682e-07,
|
| 1502 |
+
"loss": 0.0207,
|
| 1503 |
+
"reward": 0.21875,
|
| 1504 |
+
"reward_mean": 0.21875,
|
| 1505 |
+
"reward_std": 0.24511480331420898,
|
| 1506 |
+
"rewards/accuracy_reward": 0.21875,
|
| 1507 |
+
"step": 107
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"advantages": 1.4901161193847656e-08,
|
| 1511 |
+
"completion_length": 164.40625,
|
| 1512 |
+
"epoch": 0.0927038626609442,
|
| 1513 |
+
"grad_norm": 4.733726978302002,
|
| 1514 |
+
"kl": 0.13671875,
|
| 1515 |
+
"learning_rate": 9.072961373390558e-07,
|
| 1516 |
+
"loss": 0.0137,
|
| 1517 |
+
"reward": 0.25,
|
| 1518 |
+
"reward_mean": 0.25,
|
| 1519 |
+
"reward_std": 0.4261348247528076,
|
| 1520 |
+
"rewards/accuracy_reward": 0.25,
|
| 1521 |
+
"step": 108
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"advantages": 1.30385160446167e-08,
|
| 1525 |
+
"completion_length": 137.53125,
|
| 1526 |
+
"epoch": 0.09356223175965665,
|
| 1527 |
+
"grad_norm": 4.860609531402588,
|
| 1528 |
+
"kl": 0.1376953125,
|
| 1529 |
+
"learning_rate": 9.064377682403434e-07,
|
| 1530 |
+
"loss": 0.0138,
|
| 1531 |
+
"reward": 0.375,
|
| 1532 |
+
"reward_mean": 0.375,
|
| 1533 |
+
"reward_std": 0.4492306709289551,
|
| 1534 |
+
"rewards/accuracy_reward": 0.375,
|
| 1535 |
+
"step": 109
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"advantages": 2.60770320892334e-08,
|
| 1539 |
+
"completion_length": 143.1875,
|
| 1540 |
+
"epoch": 0.0944206008583691,
|
| 1541 |
+
"grad_norm": 5.030947685241699,
|
| 1542 |
+
"kl": 0.216796875,
|
| 1543 |
+
"learning_rate": 9.055793991416309e-07,
|
| 1544 |
+
"loss": 0.0217,
|
| 1545 |
+
"reward": 0.25,
|
| 1546 |
+
"reward_mean": 0.25,
|
| 1547 |
+
"reward_std": 0.4492306709289551,
|
| 1548 |
+
"rewards/accuracy_reward": 0.25,
|
| 1549 |
+
"step": 110
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"advantages": 2.0489096641540527e-08,
|
| 1553 |
+
"completion_length": 154.6875,
|
| 1554 |
+
"epoch": 0.09527896995708154,
|
| 1555 |
+
"grad_norm": 5.2177534103393555,
|
| 1556 |
+
"kl": 0.138671875,
|
| 1557 |
+
"learning_rate": 9.047210300429185e-07,
|
| 1558 |
+
"loss": 0.0139,
|
| 1559 |
+
"reward": 0.4375,
|
| 1560 |
+
"reward_mean": 0.4375,
|
| 1561 |
+
"reward_std": 0.3335031569004059,
|
| 1562 |
+
"rewards/accuracy_reward": 0.4375,
|
| 1563 |
+
"step": 111
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"advantages": 9.313225746154785e-09,
|
| 1567 |
+
"completion_length": 127.625,
|
| 1568 |
+
"epoch": 0.096137339055794,
|
| 1569 |
+
"grad_norm": 5.624181747436523,
|
| 1570 |
+
"kl": 0.1787109375,
|
| 1571 |
+
"learning_rate": 9.03862660944206e-07,
|
| 1572 |
+
"loss": 0.0179,
|
| 1573 |
+
"reward": 0.46875,
|
| 1574 |
+
"reward_mean": 0.46875,
|
| 1575 |
+
"reward_std": 0.5302791595458984,
|
| 1576 |
+
"rewards/accuracy_reward": 0.46875,
|
| 1577 |
+
"step": 112
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"advantages": 7.450580596923828e-09,
|
| 1581 |
+
"completion_length": 153.84375,
|
| 1582 |
+
"epoch": 0.09699570815450644,
|
| 1583 |
+
"grad_norm": 3.743622303009033,
|
| 1584 |
+
"kl": 0.1396484375,
|
| 1585 |
+
"learning_rate": 9.030042918454935e-07,
|
| 1586 |
+
"loss": 0.0139,
|
| 1587 |
+
"reward": 0.1875,
|
| 1588 |
+
"reward_mean": 0.1875,
|
| 1589 |
+
"reward_std": 0.3104073107242584,
|
| 1590 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1591 |
+
"step": 113
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"advantages": -1.1175870895385742e-08,
|
| 1595 |
+
"completion_length": 162.5625,
|
| 1596 |
+
"epoch": 0.09785407725321889,
|
| 1597 |
+
"grad_norm": 4.363542556762695,
|
| 1598 |
+
"kl": 0.181640625,
|
| 1599 |
+
"learning_rate": 9.02145922746781e-07,
|
| 1600 |
+
"loss": 0.0182,
|
| 1601 |
+
"reward": 0.375,
|
| 1602 |
+
"reward_mean": 0.375,
|
| 1603 |
+
"reward_std": 0.3745020925998688,
|
| 1604 |
+
"rewards/accuracy_reward": 0.375,
|
| 1605 |
+
"step": 114
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"advantages": 7.450580596923828e-09,
|
| 1609 |
+
"completion_length": 154.3125,
|
| 1610 |
+
"epoch": 0.09871244635193133,
|
| 1611 |
+
"grad_norm": 5.912485599517822,
|
| 1612 |
+
"kl": 0.169921875,
|
| 1613 |
+
"learning_rate": 9.012875536480686e-07,
|
| 1614 |
+
"loss": 0.017,
|
| 1615 |
+
"reward": 0.34375,
|
| 1616 |
+
"reward_mean": 0.34375,
|
| 1617 |
+
"reward_std": 0.3608423173427582,
|
| 1618 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1619 |
+
"step": 115
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"advantages": 1.4901161193847656e-08,
|
| 1623 |
+
"completion_length": 153.03125,
|
| 1624 |
+
"epoch": 0.09957081545064378,
|
| 1625 |
+
"grad_norm": 4.207987308502197,
|
| 1626 |
+
"kl": 0.11962890625,
|
| 1627 |
+
"learning_rate": 9.004291845493562e-07,
|
| 1628 |
+
"loss": 0.0119,
|
| 1629 |
+
"reward": 0.25,
|
| 1630 |
+
"reward_mean": 0.25,
|
| 1631 |
+
"reward_std": 0.4261348247528076,
|
| 1632 |
+
"rewards/accuracy_reward": 0.25,
|
| 1633 |
+
"step": 116
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"advantages": -5.587935447692871e-09,
|
| 1637 |
+
"completion_length": 149.09375,
|
| 1638 |
+
"epoch": 0.10042918454935622,
|
| 1639 |
+
"grad_norm": 4.171358108520508,
|
| 1640 |
+
"kl": 0.181640625,
|
| 1641 |
+
"learning_rate": 8.995708154506437e-07,
|
| 1642 |
+
"loss": 0.0181,
|
| 1643 |
+
"reward": 0.1875,
|
| 1644 |
+
"reward_mean": 0.1875,
|
| 1645 |
+
"reward_std": 0.2177756428718567,
|
| 1646 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1647 |
+
"step": 117
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"advantages": 1.6763806343078613e-08,
|
| 1651 |
+
"completion_length": 135.25,
|
| 1652 |
+
"epoch": 0.10128755364806867,
|
| 1653 |
+
"grad_norm": 3.7221720218658447,
|
| 1654 |
+
"kl": 0.1357421875,
|
| 1655 |
+
"learning_rate": 8.987124463519313e-07,
|
| 1656 |
+
"loss": 0.0136,
|
| 1657 |
+
"reward": 0.15625,
|
| 1658 |
+
"reward_mean": 0.15625,
|
| 1659 |
+
"reward_std": 0.3061639964580536,
|
| 1660 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1661 |
+
"step": 118
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"advantages": 1.4901161193847656e-08,
|
| 1665 |
+
"completion_length": 154.40625,
|
| 1666 |
+
"epoch": 0.10214592274678111,
|
| 1667 |
+
"grad_norm": 7.550022602081299,
|
| 1668 |
+
"kl": 0.318359375,
|
| 1669 |
+
"learning_rate": 8.978540772532188e-07,
|
| 1670 |
+
"loss": 0.0318,
|
| 1671 |
+
"reward": 0.25,
|
| 1672 |
+
"reward_mean": 0.25,
|
| 1673 |
+
"reward_std": 0.3650856614112854,
|
| 1674 |
+
"rewards/accuracy_reward": 0.25,
|
| 1675 |
+
"step": 119
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"advantages": 2.9802322387695312e-08,
|
| 1679 |
+
"completion_length": 139.15625,
|
| 1680 |
+
"epoch": 0.10300429184549356,
|
| 1681 |
+
"grad_norm": 5.675111293792725,
|
| 1682 |
+
"kl": 0.1552734375,
|
| 1683 |
+
"learning_rate": 8.969957081545064e-07,
|
| 1684 |
+
"loss": 0.0155,
|
| 1685 |
+
"reward": 0.28125,
|
| 1686 |
+
"reward_mean": 0.28125,
|
| 1687 |
+
"reward_std": 0.4628904461860657,
|
| 1688 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1689 |
+
"step": 120
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"advantages": 1.1175870895385742e-08,
|
| 1693 |
+
"completion_length": 138.125,
|
| 1694 |
+
"epoch": 0.10386266094420601,
|
| 1695 |
+
"grad_norm": 4.683244228363037,
|
| 1696 |
+
"kl": 0.142578125,
|
| 1697 |
+
"learning_rate": 8.96137339055794e-07,
|
| 1698 |
+
"loss": 0.0142,
|
| 1699 |
+
"reward": 0.34375,
|
| 1700 |
+
"reward_mean": 0.34375,
|
| 1701 |
+
"reward_std": 0.4628904461860657,
|
| 1702 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1703 |
+
"step": 121
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"advantages": -1.862645149230957e-09,
|
| 1707 |
+
"completion_length": 129.4375,
|
| 1708 |
+
"epoch": 0.10472103004291845,
|
| 1709 |
+
"grad_norm": 4.976833820343018,
|
| 1710 |
+
"kl": 0.1767578125,
|
| 1711 |
+
"learning_rate": 8.952789699570816e-07,
|
| 1712 |
+
"loss": 0.0177,
|
| 1713 |
+
"reward": 0.46875,
|
| 1714 |
+
"reward_mean": 0.46875,
|
| 1715 |
+
"reward_std": 0.5038893818855286,
|
| 1716 |
+
"rewards/accuracy_reward": 0.46875,
|
| 1717 |
+
"step": 122
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"advantages": 1.862645149230957e-09,
|
| 1721 |
+
"completion_length": 153.03125,
|
| 1722 |
+
"epoch": 0.1055793991416309,
|
| 1723 |
+
"grad_norm": 4.796186447143555,
|
| 1724 |
+
"kl": 0.1201171875,
|
| 1725 |
+
"learning_rate": 8.94420600858369e-07,
|
| 1726 |
+
"loss": 0.012,
|
| 1727 |
+
"reward": 0.375,
|
| 1728 |
+
"reward_mean": 0.375,
|
| 1729 |
+
"reward_std": 0.4671337604522705,
|
| 1730 |
+
"rewards/accuracy_reward": 0.375,
|
| 1731 |
+
"step": 123
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"advantages": -1.862645149230957e-09,
|
| 1735 |
+
"completion_length": 109.25,
|
| 1736 |
+
"epoch": 0.10643776824034334,
|
| 1737 |
+
"grad_norm": 4.939033031463623,
|
| 1738 |
+
"kl": 0.2236328125,
|
| 1739 |
+
"learning_rate": 8.935622317596566e-07,
|
| 1740 |
+
"loss": 0.0223,
|
| 1741 |
+
"reward": 0.46875,
|
| 1742 |
+
"reward_mean": 0.46875,
|
| 1743 |
+
"reward_std": 0.3061639964580536,
|
| 1744 |
+
"rewards/accuracy_reward": 0.46875,
|
| 1745 |
+
"step": 124
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"advantages": 1.30385160446167e-08,
|
| 1749 |
+
"completion_length": 131.90625,
|
| 1750 |
+
"epoch": 0.1072961373390558,
|
| 1751 |
+
"grad_norm": 6.3975114822387695,
|
| 1752 |
+
"kl": 0.1953125,
|
| 1753 |
+
"learning_rate": 8.927038626609442e-07,
|
| 1754 |
+
"loss": 0.0195,
|
| 1755 |
+
"reward": 0.375,
|
| 1756 |
+
"reward_mean": 0.375,
|
| 1757 |
+
"reward_std": 0.48503684997558594,
|
| 1758 |
+
"rewards/accuracy_reward": 0.375,
|
| 1759 |
+
"step": 125
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"advantages": 1.30385160446167e-08,
|
| 1763 |
+
"completion_length": 108.375,
|
| 1764 |
+
"epoch": 0.10815450643776824,
|
| 1765 |
+
"grad_norm": 5.976772308349609,
|
| 1766 |
+
"kl": 0.1650390625,
|
| 1767 |
+
"learning_rate": 8.918454935622317e-07,
|
| 1768 |
+
"loss": 0.0165,
|
| 1769 |
+
"reward": 0.375,
|
| 1770 |
+
"reward_mean": 0.375,
|
| 1771 |
+
"reward_std": 0.49022960662841797,
|
| 1772 |
+
"rewards/accuracy_reward": 0.375,
|
| 1773 |
+
"step": 126
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"advantages": 1.4901161193847656e-08,
|
| 1777 |
+
"completion_length": 129.25,
|
| 1778 |
+
"epoch": 0.10901287553648069,
|
| 1779 |
+
"grad_norm": 5.26469087600708,
|
| 1780 |
+
"kl": 0.14453125,
|
| 1781 |
+
"learning_rate": 8.909871244635193e-07,
|
| 1782 |
+
"loss": 0.0144,
|
| 1783 |
+
"reward": 0.375,
|
| 1784 |
+
"reward_mean": 0.375,
|
| 1785 |
+
"reward_std": 0.4629100561141968,
|
| 1786 |
+
"rewards/accuracy_reward": 0.375,
|
| 1787 |
+
"step": 127
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"advantages": -1.1175870895385742e-08,
|
| 1791 |
+
"completion_length": 128.3125,
|
| 1792 |
+
"epoch": 0.10987124463519313,
|
| 1793 |
+
"grad_norm": 5.042163848876953,
|
| 1794 |
+
"kl": 0.1328125,
|
| 1795 |
+
"learning_rate": 8.901287553648068e-07,
|
| 1796 |
+
"loss": 0.0133,
|
| 1797 |
+
"reward": 0.5,
|
| 1798 |
+
"reward_mean": 0.5,
|
| 1799 |
+
"reward_std": 0.5081326961517334,
|
| 1800 |
+
"rewards/accuracy_reward": 0.5,
|
| 1801 |
+
"step": 128
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"advantages": 1.862645149230957e-08,
|
| 1805 |
+
"completion_length": 150.875,
|
| 1806 |
+
"epoch": 0.11072961373390558,
|
| 1807 |
+
"grad_norm": 4.708669662475586,
|
| 1808 |
+
"kl": 0.12353515625,
|
| 1809 |
+
"learning_rate": 8.892703862660944e-07,
|
| 1810 |
+
"loss": 0.0124,
|
| 1811 |
+
"reward": 0.15625,
|
| 1812 |
+
"reward_mean": 0.15625,
|
| 1813 |
+
"reward_std": 0.3808925747871399,
|
| 1814 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1815 |
+
"step": 129
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"advantages": 0.0,
|
| 1819 |
+
"completion_length": 120.40625,
|
| 1820 |
+
"epoch": 0.11158798283261803,
|
| 1821 |
+
"grad_norm": 5.916502952575684,
|
| 1822 |
+
"kl": 0.1708984375,
|
| 1823 |
+
"learning_rate": 8.884120171673819e-07,
|
| 1824 |
+
"loss": 0.0171,
|
| 1825 |
+
"reward": 0.34375,
|
| 1826 |
+
"reward_mean": 0.34375,
|
| 1827 |
+
"reward_std": 0.4397946000099182,
|
| 1828 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1829 |
+
"step": 130
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"advantages": 1.4901161193847656e-08,
|
| 1833 |
+
"completion_length": 136.90625,
|
| 1834 |
+
"epoch": 0.11244635193133047,
|
| 1835 |
+
"grad_norm": 4.78549861907959,
|
| 1836 |
+
"kl": 0.1708984375,
|
| 1837 |
+
"learning_rate": 8.875536480686695e-07,
|
| 1838 |
+
"loss": 0.0171,
|
| 1839 |
+
"reward": 0.40625,
|
| 1840 |
+
"reward_mean": 0.40625,
|
| 1841 |
+
"reward_std": 0.5038893818855286,
|
| 1842 |
+
"rewards/accuracy_reward": 0.40625,
|
| 1843 |
+
"step": 131
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"advantages": -9.313225746154785e-09,
|
| 1847 |
+
"completion_length": 109.71875,
|
| 1848 |
+
"epoch": 0.11330472103004292,
|
| 1849 |
+
"grad_norm": 6.360599040985107,
|
| 1850 |
+
"kl": 0.25390625,
|
| 1851 |
+
"learning_rate": 8.86695278969957e-07,
|
| 1852 |
+
"loss": 0.0254,
|
| 1853 |
+
"reward": 0.40625,
|
| 1854 |
+
"reward_mean": 0.40625,
|
| 1855 |
+
"reward_std": 0.3608423173427582,
|
| 1856 |
+
"rewards/accuracy_reward": 0.40625,
|
| 1857 |
+
"step": 132
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"advantages": 1.4901161193847656e-08,
|
| 1861 |
+
"completion_length": 135.375,
|
| 1862 |
+
"epoch": 0.11416309012875536,
|
| 1863 |
+
"grad_norm": 4.24266242980957,
|
| 1864 |
+
"kl": 0.1650390625,
|
| 1865 |
+
"learning_rate": 8.858369098712447e-07,
|
| 1866 |
+
"loss": 0.0165,
|
| 1867 |
+
"reward": 0.28125,
|
| 1868 |
+
"reward_mean": 0.28125,
|
| 1869 |
+
"reward_std": 0.378745436668396,
|
| 1870 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1871 |
+
"step": 133
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"advantages": 0.0,
|
| 1875 |
+
"completion_length": 97.59375,
|
| 1876 |
+
"epoch": 0.11502145922746781,
|
| 1877 |
+
"grad_norm": 6.252864360809326,
|
| 1878 |
+
"kl": 0.2177734375,
|
| 1879 |
+
"learning_rate": 8.849785407725322e-07,
|
| 1880 |
+
"loss": 0.0217,
|
| 1881 |
+
"reward": 0.5,
|
| 1882 |
+
"reward_mean": 0.5,
|
| 1883 |
+
"reward_std": 0.4082317352294922,
|
| 1884 |
+
"rewards/accuracy_reward": 0.5,
|
| 1885 |
+
"step": 134
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"advantages": 2.0489096641540527e-08,
|
| 1889 |
+
"completion_length": 118.8125,
|
| 1890 |
+
"epoch": 0.11587982832618025,
|
| 1891 |
+
"grad_norm": 5.049542427062988,
|
| 1892 |
+
"kl": 0.2060546875,
|
| 1893 |
+
"learning_rate": 8.841201716738197e-07,
|
| 1894 |
+
"loss": 0.0206,
|
| 1895 |
+
"reward": 0.1875,
|
| 1896 |
+
"reward_mean": 0.1875,
|
| 1897 |
+
"reward_std": 0.3335031569004059,
|
| 1898 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1899 |
+
"step": 135
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"advantages": -3.725290298461914e-09,
|
| 1903 |
+
"completion_length": 120.5625,
|
| 1904 |
+
"epoch": 0.1167381974248927,
|
| 1905 |
+
"grad_norm": 5.062263011932373,
|
| 1906 |
+
"kl": 0.189453125,
|
| 1907 |
+
"learning_rate": 8.832618025751073e-07,
|
| 1908 |
+
"loss": 0.0189,
|
| 1909 |
+
"reward": 0.59375,
|
| 1910 |
+
"reward_mean": 0.59375,
|
| 1911 |
+
"reward_std": 0.4807935357093811,
|
| 1912 |
+
"rewards/accuracy_reward": 0.59375,
|
| 1913 |
+
"step": 136
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"advantages": 2.2351741790771484e-08,
|
| 1917 |
+
"completion_length": 122.96875,
|
| 1918 |
+
"epoch": 0.11759656652360514,
|
| 1919 |
+
"grad_norm": 6.447961330413818,
|
| 1920 |
+
"kl": 0.19921875,
|
| 1921 |
+
"learning_rate": 8.824034334763948e-07,
|
| 1922 |
+
"loss": 0.0199,
|
| 1923 |
+
"reward": 0.34375,
|
| 1924 |
+
"reward_mean": 0.34375,
|
| 1925 |
+
"reward_std": 0.4944729208946228,
|
| 1926 |
+
"rewards/accuracy_reward": 0.34375,
|
| 1927 |
+
"step": 137
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"advantages": 1.862645149230957e-08,
|
| 1931 |
+
"completion_length": 125.3125,
|
| 1932 |
+
"epoch": 0.1184549356223176,
|
| 1933 |
+
"grad_norm": 6.920899868011475,
|
| 1934 |
+
"kl": 0.208984375,
|
| 1935 |
+
"learning_rate": 8.815450643776824e-07,
|
| 1936 |
+
"loss": 0.0209,
|
| 1937 |
+
"reward": 0.28125,
|
| 1938 |
+
"reward_mean": 0.28125,
|
| 1939 |
+
"reward_std": 0.4534739851951599,
|
| 1940 |
+
"rewards/accuracy_reward": 0.28125,
|
| 1941 |
+
"step": 138
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"advantages": -3.725290298461914e-09,
|
| 1945 |
+
"completion_length": 128.4375,
|
| 1946 |
+
"epoch": 0.11931330472103004,
|
| 1947 |
+
"grad_norm": 4.800882339477539,
|
| 1948 |
+
"kl": 0.173828125,
|
| 1949 |
+
"learning_rate": 8.806866952789699e-07,
|
| 1950 |
+
"loss": 0.0173,
|
| 1951 |
+
"reward": 0.5,
|
| 1952 |
+
"reward_mean": 0.5,
|
| 1953 |
+
"reward_std": 0.4492306709289551,
|
| 1954 |
+
"rewards/accuracy_reward": 0.5,
|
| 1955 |
+
"step": 139
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"advantages": 1.862645149230957e-08,
|
| 1959 |
+
"completion_length": 108.1875,
|
| 1960 |
+
"epoch": 0.12017167381974249,
|
| 1961 |
+
"grad_norm": 22.795358657836914,
|
| 1962 |
+
"kl": 0.419921875,
|
| 1963 |
+
"learning_rate": 8.798283261802575e-07,
|
| 1964 |
+
"loss": 0.042,
|
| 1965 |
+
"reward": 0.15625,
|
| 1966 |
+
"reward_mean": 0.15625,
|
| 1967 |
+
"reward_std": 0.3808925747871399,
|
| 1968 |
+
"rewards/accuracy_reward": 0.15625,
|
| 1969 |
+
"step": 140
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"advantages": 1.1175870895385742e-08,
|
| 1973 |
+
"completion_length": 141.84375,
|
| 1974 |
+
"epoch": 0.12103004291845494,
|
| 1975 |
+
"grad_norm": 6.3895745277404785,
|
| 1976 |
+
"kl": 0.1962890625,
|
| 1977 |
+
"learning_rate": 8.78969957081545e-07,
|
| 1978 |
+
"loss": 0.0196,
|
| 1979 |
+
"reward": 0.375,
|
| 1980 |
+
"reward_mean": 0.375,
|
| 1981 |
+
"reward_std": 0.47655022144317627,
|
| 1982 |
+
"rewards/accuracy_reward": 0.375,
|
| 1983 |
+
"step": 141
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"advantages": 7.450580596923828e-09,
|
| 1987 |
+
"completion_length": 115.3125,
|
| 1988 |
+
"epoch": 0.12188841201716738,
|
| 1989 |
+
"grad_norm": 4.0062103271484375,
|
| 1990 |
+
"kl": 0.1669921875,
|
| 1991 |
+
"learning_rate": 8.781115879828326e-07,
|
| 1992 |
+
"loss": 0.0167,
|
| 1993 |
+
"reward": 0.1875,
|
| 1994 |
+
"reward_mean": 0.1875,
|
| 1995 |
+
"reward_std": 0.249358132481575,
|
| 1996 |
+
"rewards/accuracy_reward": 0.1875,
|
| 1997 |
+
"step": 142
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"advantages": -3.725290298461914e-09,
|
| 2001 |
+
"completion_length": 131.84375,
|
| 2002 |
+
"epoch": 0.12274678111587983,
|
| 2003 |
+
"grad_norm": 6.299867630004883,
|
| 2004 |
+
"kl": 0.2451171875,
|
| 2005 |
+
"learning_rate": 8.772532188841201e-07,
|
| 2006 |
+
"loss": 0.0246,
|
| 2007 |
+
"reward": 0.625,
|
| 2008 |
+
"reward_mean": 0.625,
|
| 2009 |
+
"reward_std": 0.4671337604522705,
|
| 2010 |
+
"rewards/accuracy_reward": 0.625,
|
| 2011 |
+
"step": 143
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"advantages": -1.30385160446167e-08,
|
| 2015 |
+
"completion_length": 134.3125,
|
| 2016 |
+
"epoch": 0.12360515021459227,
|
| 2017 |
+
"grad_norm": 5.634101390838623,
|
| 2018 |
+
"kl": 0.18359375,
|
| 2019 |
+
"learning_rate": 8.763948497854076e-07,
|
| 2020 |
+
"loss": 0.0184,
|
| 2021 |
+
"reward": 0.625,
|
| 2022 |
+
"reward_mean": 0.625,
|
| 2023 |
+
"reward_std": 0.4850368797779083,
|
| 2024 |
+
"rewards/accuracy_reward": 0.625,
|
| 2025 |
+
"step": 144
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"advantages": -2.0489096641540527e-08,
|
| 2029 |
+
"completion_length": 124.90625,
|
| 2030 |
+
"epoch": 0.12446351931330472,
|
| 2031 |
+
"grad_norm": 5.229036331176758,
|
| 2032 |
+
"kl": 0.1435546875,
|
| 2033 |
+
"learning_rate": 8.755364806866952e-07,
|
| 2034 |
+
"loss": 0.0143,
|
| 2035 |
+
"reward": 0.53125,
|
| 2036 |
+
"reward_mean": 0.53125,
|
| 2037 |
+
"reward_std": 0.4628904461860657,
|
| 2038 |
+
"rewards/accuracy_reward": 0.53125,
|
| 2039 |
+
"step": 145
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"advantages": 7.450580596923828e-09,
|
| 2043 |
+
"completion_length": 121.59375,
|
| 2044 |
+
"epoch": 0.12532188841201716,
|
| 2045 |
+
"grad_norm": 4.288768768310547,
|
| 2046 |
+
"kl": 0.1875,
|
| 2047 |
+
"learning_rate": 8.746781115879828e-07,
|
| 2048 |
+
"loss": 0.0188,
|
| 2049 |
+
"reward": 0.3125,
|
| 2050 |
+
"reward_mean": 0.3125,
|
| 2051 |
+
"reward_std": 0.3745020925998688,
|
| 2052 |
+
"rewards/accuracy_reward": 0.3125,
|
| 2053 |
+
"step": 146
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"advantages": 2.60770320892334e-08,
|
| 2057 |
+
"completion_length": 145.53125,
|
| 2058 |
+
"epoch": 0.12618025751072962,
|
| 2059 |
+
"grad_norm": 4.884040355682373,
|
| 2060 |
+
"kl": 0.189453125,
|
| 2061 |
+
"learning_rate": 8.738197424892704e-07,
|
| 2062 |
+
"loss": 0.0189,
|
| 2063 |
+
"reward": 0.375,
|
| 2064 |
+
"reward_mean": 0.375,
|
| 2065 |
+
"reward_std": 0.5081326961517334,
|
| 2066 |
+
"rewards/accuracy_reward": 0.375,
|
| 2067 |
+
"step": 147
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"advantages": 2.60770320892334e-08,
|
| 2071 |
+
"completion_length": 129.34375,
|
| 2072 |
+
"epoch": 0.12703862660944207,
|
| 2073 |
+
"grad_norm": 5.560000419616699,
|
| 2074 |
+
"kl": 0.1904296875,
|
| 2075 |
+
"learning_rate": 8.729613733905579e-07,
|
| 2076 |
+
"loss": 0.019,
|
| 2077 |
+
"reward": 0.375,
|
| 2078 |
+
"reward_mean": 0.375,
|
| 2079 |
+
"reward_std": 0.5081326961517334,
|
| 2080 |
+
"rewards/accuracy_reward": 0.375,
|
| 2081 |
+
"step": 148
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"advantages": 9.313225746154785e-09,
|
| 2085 |
+
"completion_length": 125.46875,
|
| 2086 |
+
"epoch": 0.1278969957081545,
|
| 2087 |
+
"grad_norm": 5.247032642364502,
|
| 2088 |
+
"kl": 0.14453125,
|
| 2089 |
+
"learning_rate": 8.721030042918455e-07,
|
| 2090 |
+
"loss": 0.0145,
|
| 2091 |
+
"reward": 0.46875,
|
| 2092 |
+
"reward_mean": 0.46875,
|
| 2093 |
+
"reward_std": 0.5302791595458984,
|
| 2094 |
+
"rewards/accuracy_reward": 0.46875,
|
| 2095 |
+
"step": 149
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"advantages": 1.1175870895385742e-08,
|
| 2099 |
+
"completion_length": 123.5625,
|
| 2100 |
+
"epoch": 0.12875536480686695,
|
| 2101 |
+
"grad_norm": 6.392980098724365,
|
| 2102 |
+
"kl": 0.193359375,
|
| 2103 |
+
"learning_rate": 8.71244635193133e-07,
|
| 2104 |
+
"loss": 0.0193,
|
| 2105 |
+
"reward": 0.5,
|
| 2106 |
+
"reward_mean": 0.5,
|
| 2107 |
+
"reward_std": 0.5081326961517334,
|
| 2108 |
+
"rewards/accuracy_reward": 0.5,
|
| 2109 |
+
"step": 150
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"advantages": -1.4901161193847656e-08,
|
| 2113 |
+
"completion_length": 125.84375,
|
| 2114 |
+
"epoch": 0.1296137339055794,
|
| 2115 |
+
"grad_norm": 5.506472587585449,
|
| 2116 |
+
"kl": 0.2099609375,
|
| 2117 |
+
"learning_rate": 8.703862660944206e-07,
|
| 2118 |
+
"loss": 0.021,
|
| 2119 |
+
"reward": 0.5625,
|
| 2120 |
+
"reward_mean": 0.5625,
|
| 2121 |
+
"reward_std": 0.5260357856750488,
|
| 2122 |
+
"rewards/accuracy_reward": 0.5625,
|
| 2123 |
+
"step": 151
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"advantages": 5.587935447692871e-09,
|
| 2127 |
+
"completion_length": 111.53125,
|
| 2128 |
+
"epoch": 0.13047210300429185,
|
| 2129 |
+
"grad_norm": 8.247237205505371,
|
| 2130 |
+
"kl": 0.2578125,
|
| 2131 |
+
"learning_rate": 8.695278969957082e-07,
|
| 2132 |
+
"loss": 0.0258,
|
| 2133 |
+
"reward": 0.40625,
|
| 2134 |
+
"reward_mean": 0.40625,
|
| 2135 |
+
"reward_std": 0.4944729208946228,
|
| 2136 |
+
"rewards/accuracy_reward": 0.40625,
|
| 2137 |
+
"step": 152
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"advantages": -1.862645149230957e-08,
|
| 2141 |
+
"completion_length": 135.6875,
|
| 2142 |
+
"epoch": 0.1313304721030043,
|
| 2143 |
+
"grad_norm": 5.90345573425293,
|
| 2144 |
+
"kl": 0.197265625,
|
| 2145 |
+
"learning_rate": 8.686695278969956e-07,
|
| 2146 |
+
"loss": 0.0197,
|
| 2147 |
+
"reward": 0.5625,
|
| 2148 |
+
"reward_mean": 0.5625,
|
| 2149 |
+
"reward_std": 0.49022960662841797,
|
| 2150 |
+
"rewards/accuracy_reward": 0.5625,
|
| 2151 |
+
"step": 153
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"advantages": 1.4901161193847656e-08,
|
| 2155 |
+
"completion_length": 134.53125,
|
| 2156 |
+
"epoch": 0.13218884120171673,
|
| 2157 |
+
"grad_norm": 5.609891891479492,
|
| 2158 |
+
"kl": 0.171875,
|
| 2159 |
+
"learning_rate": 8.678111587982832e-07,
|
| 2160 |
+
"loss": 0.0172,
|
| 2161 |
+
"reward": 0.40625,
|
| 2162 |
+
"reward_mean": 0.40625,
|
| 2163 |
+
"reward_std": 0.5123760104179382,
|
| 2164 |
+
"rewards/accuracy_reward": 0.40625,
|
| 2165 |
+
"step": 154
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"advantages": -1.1175870895385742e-08,
|
| 2169 |
+
"completion_length": 122.59375,
|
| 2170 |
+
"epoch": 0.13304721030042918,
|
| 2171 |
+
"grad_norm": 4.156961917877197,
|
| 2172 |
+
"kl": 0.1435546875,
|
| 2173 |
+
"learning_rate": 8.669527896995707e-07,
|
| 2174 |
+
"loss": 0.0143,
|
| 2175 |
+
"reward": 0.53125,
|
| 2176 |
+
"reward_mean": 0.53125,
|
| 2177 |
+
"reward_std": 0.3377464711666107,
|
| 2178 |
+
"rewards/accuracy_reward": 0.53125,
|
| 2179 |
+
"step": 155
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"advantages": -1.862645149230957e-09,
|
| 2183 |
+
"completion_length": 104.71875,
|
| 2184 |
+
"epoch": 0.13390557939914163,
|
| 2185 |
+
"grad_norm": 7.677206993103027,
|
| 2186 |
+
"kl": 0.291015625,
|
| 2187 |
+
"learning_rate": 8.660944206008583e-07,
|
| 2188 |
+
"loss": 0.0291,
|
| 2189 |
+
"reward": 0.21875,
|
| 2190 |
+
"reward_mean": 0.21875,
|
| 2191 |
+
"reward_std": 0.24511480331420898,
|
| 2192 |
+
"rewards/accuracy_reward": 0.21875,
|
| 2193 |
+
"step": 156
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"advantages": -1.30385160446167e-08,
|
| 2197 |
+
"completion_length": 130.375,
|
| 2198 |
+
"epoch": 0.13476394849785409,
|
| 2199 |
+
"grad_norm": 4.416824817657471,
|
| 2200 |
+
"kl": 0.166015625,
|
| 2201 |
+
"learning_rate": 8.652360515021458e-07,
|
| 2202 |
+
"loss": 0.0166,
|
| 2203 |
+
"reward": 0.625,
|
| 2204 |
+
"reward_mean": 0.625,
|
| 2205 |
+
"reward_std": 0.4492306709289551,
|
| 2206 |
+
"rewards/accuracy_reward": 0.625,
|
| 2207 |
+
"step": 157
|
| 2208 |
+
},
|
| 2209 |
+
{
|
| 2210 |
+
"advantages": 1.6763806343078613e-08,
|
| 2211 |
+
"completion_length": 119.46875,
|
| 2212 |
+
"epoch": 0.1356223175965665,
|
| 2213 |
+
"grad_norm": 3.8171494007110596,
|
| 2214 |
+
"kl": 0.1728515625,
|
| 2215 |
+
"learning_rate": 8.643776824034334e-07,
|
| 2216 |
+
"loss": 0.0173,
|
| 2217 |
+
"reward": 0.15625,
|
| 2218 |
+
"reward_mean": 0.15625,
|
| 2219 |
+
"reward_std": 0.24511480331420898,
|
| 2220 |
+
"rewards/accuracy_reward": 0.15625,
|
| 2221 |
+
"step": 158
|
| 2222 |
+
},
|
| 2223 |
+
{
|
| 2224 |
+
"advantages": 9.313225746154785e-09,
|
| 2225 |
+
"completion_length": 107.59375,
|
| 2226 |
+
"epoch": 0.13648068669527896,
|
| 2227 |
+
"grad_norm": 5.097965717315674,
|
| 2228 |
+
"kl": 0.1787109375,
|
| 2229 |
+
"learning_rate": 8.63519313304721e-07,
|
| 2230 |
+
"loss": 0.0179,
|
| 2231 |
+
"reward": 0.59375,
|
| 2232 |
+
"reward_mean": 0.59375,
|
| 2233 |
+
"reward_std": 0.38816186785697937,
|
| 2234 |
+
"rewards/accuracy_reward": 0.59375,
|
| 2235 |
+
"step": 159
|
| 2236 |
+
},
|
| 2237 |
+
{
|
| 2238 |
+
"advantages": 1.30385160446167e-08,
|
| 2239 |
+
"completion_length": 110.875,
|
| 2240 |
+
"epoch": 0.13733905579399142,
|
| 2241 |
+
"grad_norm": 5.293290138244629,
|
| 2242 |
+
"kl": 0.169921875,
|
| 2243 |
+
"learning_rate": 8.626609442060086e-07,
|
| 2244 |
+
"loss": 0.017,
|
| 2245 |
+
"reward": 0.375,
|
| 2246 |
+
"reward_mean": 0.375,
|
| 2247 |
+
"reward_std": 0.4492306709289551,
|
| 2248 |
+
"rewards/accuracy_reward": 0.375,
|
| 2249 |
+
"step": 160
|
| 2250 |
+
}
|
| 2251 |
+
],
|
| 2252 |
+
"logging_steps": 1.0,
|
| 2253 |
+
"max_steps": 1165,
|
| 2254 |
+
"num_input_tokens_seen": 0,
|
| 2255 |
+
"num_train_epochs": 1,
|
| 2256 |
+
"save_steps": 10,
|
| 2257 |
+
"stateful_callbacks": {
|
| 2258 |
+
"TrainerControl": {
|
| 2259 |
+
"args": {
|
| 2260 |
+
"should_epoch_stop": false,
|
| 2261 |
+
"should_evaluate": false,
|
| 2262 |
+
"should_log": false,
|
| 2263 |
+
"should_save": true,
|
| 2264 |
+
"should_training_stop": false
|
| 2265 |
+
},
|
| 2266 |
+
"attributes": {}
|
| 2267 |
+
}
|
| 2268 |
+
},
|
| 2269 |
+
"total_flos": 0.0,
|
| 2270 |
+
"train_batch_size": 1,
|
| 2271 |
+
"trial_name": null,
|
| 2272 |
+
"trial_params": null
|
| 2273 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8738459828a454257f90ce379157027577338807999ffff54bb828d59425343
|
| 3 |
+
size 8312
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|