Xiaolihai commited on
Commit
f36c9a9
·
verified ·
1 Parent(s): 90390a5

Add model card

Browse files
Files changed (1) hide show
  1. README.md +3 -16
README.md CHANGED
@@ -12,20 +12,12 @@ pipeline_tag: text-classification
12
 
13
  # Qwen 3B Medical Department Classifier (400 Training Samples)
14
 
15
- This is a fine-tuned Qwen 3B model for medical department classification on Chinese medical dialogues, trained with 400 samples.
16
 
17
- ## Model Details
18
-
19
- - **Base Model**: Qwen 3B
20
- - **Task**: Medical Department Classification
21
- - **Language**: Chinese (zh)
22
- - **Training Size**: 400 samples
23
- - **Number of Classes**: 44
24
- - **Classes**: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43']
25
 
26
  ## Model Description
27
 
28
- This model has been fine-tuned to classify medical dialogues into appropriate medical departments. It's based on the Qwen 3B model and has been specifically trained for Chinese medical text classification using 400 training samples.
29
 
30
  ## Usage
31
 
@@ -36,16 +28,11 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
  model = AutoModelForSequenceClassification.from_pretrained("Xiaolihai/qwen-3b-medical-classifier-400")
37
  tokenizer = AutoTokenizer.from_pretrained("Xiaolihai/qwen-3b-medical-classifier-400")
38
 
39
- # Example usage
40
- text = "患者描述胸痛症状,需要进一步检查"
41
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
42
- outputs = model(**inputs)
43
- predictions = outputs.logits.argmax(dim=-1)
44
  ```
45
 
46
  ## Training
47
 
48
- The model was fine-tuned on medical dialogue data with 400 training samples.
49
 
50
  ## License
51
 
 
12
 
13
  # Qwen 3B Medical Department Classifier (400 Training Samples)
14
 
15
+ This is a fine-tuned Qwen 3B model for medical department classification on Chinese medical dialogues.
16
 
 
 
 
 
 
 
 
 
17
 
18
  ## Model Description
19
 
20
+ This model has been fine-tuned to classify medical dialogues into appropriate medical departments. It's based on the Qwen 3B model and has been specifically trained for Chinese medical text classification.
21
 
22
  ## Usage
23
 
 
28
  model = AutoModelForSequenceClassification.from_pretrained("Xiaolihai/qwen-3b-medical-classifier-400")
29
  tokenizer = AutoTokenizer.from_pretrained("Xiaolihai/qwen-3b-medical-classifier-400")
30
 
 
 
 
 
 
31
  ```
32
 
33
  ## Training
34
 
35
+ The model was fine-tuned on medical dialogue data.
36
 
37
  ## License
38