--- library_name: transformers base_model: ProsusAI/finbert tags: - generated_from_trainer metrics: - accuracy model-index: - name: finbert-custom-sentiment results: [] --- # finbert-custom-sentiment This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1984 - Accuracy: 0.9370 - Precision Macro: 0.9373 - Recall Macro: 0.9345 - F1 Macro: 0.9357 - Precision Weighted: 0.9372 - Recall Weighted: 0.9370 - F1 Weighted: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.2343 | 1.0 | 64 | 0.2211 | 0.9252 | 0.9235 | 0.9248 | 0.9239 | 0.9255 | 0.9252 | 0.9251 | | 0.1129 | 2.0 | 128 | 0.2009 | 0.9350 | 0.9340 | 0.9330 | 0.9334 | 0.9349 | 0.9350 | 0.9349 | | 0.1176 | 3.0 | 192 | 0.1984 | 0.9370 | 0.9373 | 0.9345 | 0.9357 | 0.9372 | 0.9370 | 0.9369 | ### Framework versions - Transformers 4.54.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.2