Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 715.69 +/- 25.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d77a8662dd25e4e1299d8bd9de11aa0f6c2d0332363b13081fb784d5b35ce92a
|
3 |
+
size 129202
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x136a01000>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x136a01090>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x136a01120>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x136a011b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x136a01240>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x136a012d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x136a01360>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x136a013f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x136a01480>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x136a01510>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x136a015a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x136a01630>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x135cdfa00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 200000,
|
63 |
+
"_total_timesteps": 200000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679615115413007000,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVUQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9Vc2Vycy95b2FuZ2FiaXNvbi9MaWJyYXJ5L0NhY2hlcy9weXBvZXRyeS92aXJ0dWFsZW52cy9ybC1jb3Vyc2UtNnZrc3VJWVctcHkzLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyPL1VzZXJzL3lvYW5nYWJpc29uL0xpYnJhcnkvQ2FjaGVzL3B5cG9ldHJ5L3ZpcnR1YWxlbnZzL3JsLWNvdXJzZS02dmtzdUlZVy1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG8+Jz+SjWq+bjntPoFD+L1HC1e9u5QePkT8Ir+xL1FAQCJ2P4XOXrva/3G/ictCvWzhyL9A9xK8zYAcwFlugz0DcJ4/An5pP9s1gL9b8Iq/5UEQwIpTnbwj1hW+X8ULvYq1tD63Q7I+g9pKwIoRhT5kfQxAuNjmvNhP1T6ceCy+B87POwuRCD5s1My+rGHFPjEcdT9y/9W8a1mMP2Bsa702AY++Gru9vPdA6L8+K4I9LsdFv+uFuT1kKyjA8nYyPbMPEMBDDc+7gvLyP5IMa72KtbQ+t0OyPgSJoT6KEYU+FBLdPz7Fb7uLW9E+4tpDv27sm7/eE+4+je89v3fk4z8rUXY/oDGVPYqok75Sspw+/3GxvwSJRz+uFhzAVKsYPjoqVT7L/bo+Ormpv7VcLEC2AxDA6FCSPUUrPz8RFBk+irW0PrdDsj6D2krAihGFPob7lD0qEd08vxjMPtcUGL5JAS25S6wKPsBl4b5lQxRA7EV1P37/HLyPSHK/GBdSveQcoL+f5Ei7nL45v8PYeD0w8lk/yZY4v2cn7r61qSk/A0IQwE8Pwrw16Pm+VJ1bvYq1tD63Q7I+g9pKwIoRhT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACr44u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgS05vQAAAAAXTt+/AAAAALA6Sb0AAAAAXb/9PwAAAABjwaO9AAAAAFo13T8AAAAAoPEivQAAAABms+O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzawNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHAsCr4AAAAA8cn5vwAAAACgscE9AAAAAOv56z8AAAAAv7qTPQAAAACMu+0/AAAAAGdipj0AAAAAaPX3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABItBDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhqrQ6AAAAANuc8b8AAAAAWSpWvQAAAADEPeg/AAAAAEA/aTsAAAAA7ezxPwAAAACZMxC+AAAAAGcs8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3APM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaFzevQAAAAAXy+q/AAAAAJ0McrwAAAAA0cPpPwAAAAAFcgs+AAAAABFv5z8AAAAACwi0vQAAAAAcyN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIM7xiLEUCeMAWyUTegDjAF0lEdAb9jJmNBF/nV9lChoBkdAgx1Sh8IAwWgHTegDaAhHQHApKJyhi9Z1fZQoaAZHQIA937YTTORoB03oA2gIR0BwTVV7x/d7dX2UKGgGR0CILUxVyWAxaAdN6ANoCEdAcF11fVqesnV9lChoBkdAiWKePaL4vmgHTegDaAhHQHBwtZJTVDt1fZQoaAZHQIYsGY+jdpJoB03oA2gIR0BwoednTRYzdX2UKGgGR0CFG4ohIOH4aAdN6ANoCEdAcLk5wwTM7nV9lChoBkdAh1pCRfWtl2gHTegDaAhHQHDIZvo/zJ91fZQoaAZHQHqGHkgfU4JoB03oA2gIR0Bw92udPLxJdX2UKGgGR0CIF7IK+i8GaAdN6ANoCEdAcY1RBNVR13V9lChoBkdAh6HH1WbPQmgHTegDaAhHQHG/9/4Irvt1fZQoaAZHQIQRmBnSOR1oB03oA2gIR0Bx10PH1e0HdX2UKGgGR0CJWnIYFaB7aAdN6ANoCEdAcfBJ8v24/nV9lChoBkdAEVFyaNMoMWgHSxhoCEdAcfOSlWOp9HV9lChoBkdAhqWb9AHE/GgHTegDaAhHQHIn2pVCHAR1fZQoaAZHQIeGUjeKsMloB03oA2gIR0ByRjQ+lj3FdX2UKGgGRz/7g+IMz/IbaAdLFWgIR0ByR/wUg0TDdX2UKGgGR0CGMC371qWUaAdN6ANoCEdAclF0cOskp3V9lChoBkdARLbUy57PZGgHS1NoCEdAclhkD6nBL3V9lChoBkdAYqujtXxOL2gHS/FoCEdAclvLgGbCrXV9lChoBkdAh57dI5HVgGgHTegDaAhHQHJhL9ZRsM11fZQoaAZHQHH7934bjtJoB03GAWgIR0ByihvwVj7RdX2UKGgGR0CGtJpcHGCJaAdN6ANoCEdAcoy3CsOoYXV9lChoBkdAg+UGz8gp0GgHTegDaAhHQHLAP/m1YyR1fZQoaAZHQINZPLq2SdRoB03oA2gIR0ByzM+jdpIudX2UKGgGR0B+9i3PRiPRaAdNhgNoCEdAcvU2lEZzgnV9lChoBkdAiPpTCLuQZGgHTegDaAhHQHL/xZha1Tl1fZQoaAZHQIWBcGLUCq9oB03oA2gIR0BzPUazeGfxdX2UKGgGR0CCTmaaTfSAaAdN6ANoCEdAc1Buk1uR93V9lChoBkdAQnzHlwLmZGgHS2hoCEdAc3CcFQl8gXV9lChoBkdAg+WFolD4QGgHTegDaAhHQHOMsINVinZ1fZQoaAZHQIcajJMg2ZRoB03oA2gIR0BzsrKNhmXgdX2UKGgGR0CF3ai48U22aAdN6ANoCEdAc/Nd9Ujs2XV9lChoBkdAh+ZzTvy9VWgHTegDaAhHQHQKRgy/KyR1fZQoaAZHQIoE586V+qloB03oA2gIR0B0GWCnP3SKdX2UKGgGR0CFxLz5GjKxaAdN6ANoCEdAdCRNHYpUgnV9lChoBkdARArneSB9TmgHS0hoCEdAdCpfdRBNVXV9lChoBkdAeu+UKArhBWgHTVcCaAhHQHRABreqJdl1fZQoaAZHQIgl9qFh5PdoB03oA2gIR0B0VjPv8ZUDdX2UKGgGR0CFl9B7eEZjaAdN6ANoCEdAdKzd92HLzXV9lChoBkdAdUVI1cdHUmgHTc4BaAhHQHTBBF/hESd1fZQoaAZHQIosrj7yhBZoB03oA2gIR0B1DxTxXnyNdX2UKGgGR0CH4ZHggow3aAdN6ANoCEdAdXmLq2SdOXV9lChoBkdAg2abkOqeb2gHTegDaAhHQHXZEJOWSlp1fZQoaAZHQIcflirksBhoB03oA2gIR0B14OVpsXSCdX2UKGgGR0A0EBJZntfHaAdLTmgIR0B149CAtnPFdX2UKGgGR0CB+gPo3aSLaAdN6ANoCEdAdfg8BuGbkXV9lChoBkdAhUl3cHnln2gHTegDaAhHQHYlQ3PzFuN1fZQoaAZHQIW8K7Ackt5oB03oA2gIR0B2jxDKHO8kdX2UKGgGR0CJbvTS9du6aAdN6ANoCEdAdpF/u9eyA3V9lChoBkdAOaaFVT72tmgHS21oCEdAdp7qo60Y0nV9lChoBkdAiAYuXNTtLWgHTegDaAhHQHagPXCj1wp1fZQoaAZHQIZ/8+C9RJpoB03oA2gIR0B2urAO8TSLdX2UKGgGR0CHadNqQA+7aAdN6ANoCEdAd08717IDHXV9lChoBkdAiMh8VQAMlWgHTegDaAhHQHeVhmTTvy91fZQoaAZHQIgxdtCRfWtoB03oA2gIR0B3mVdWyTpxdX2UKGgGR0CH+1MCcPOIaAdN6ANoCEdAd8/as6q82HV9lChoBkdAhsCyuyNXHWgHTegDaAhHQHhyDFdcB2h1fZQoaAZHQIrE4XQ+lj5oB03oA2gIR0B4hZ/PPcBVdX2UKGgGR0CHjGX531SPaAdN6ANoCEdAeIeldC3PRnV9lChoBkdAibqC6pYLcGgHTegDaAhHQHinW7SRbKR1fZQoaAZHQIencBuGbkRoB03oA2gIR0B5UuROk+HKdX2UKGgGR0CJ+YPkJa7maAdN6ANoCEdAeXViwjdHlXV9lChoBkdAiClUQ9RrJ2gHTegDaAhHQHl3SYgJTl11fZQoaAZHQIuELZYgaFVoB03oA2gIR0B5lUZrHlwMdX2UKGgGR0CIviQXAM2FaAdN6ANoCEdAeevhBqsU7HV9lChoBkdAijABcZ9/jWgHTegDaAhHQHn6S3w1BMV1fZQoaAZHQIvCAjt5UtJoB03oA2gIR0B5+7+aScLCdX2UKGgGR0CIlYOkLx7RaAdN6ANoCEdAeiE2AoXsPnV9lChoBkdAg8PePRzBAWgHTegDaAhHQHqFI4Ia99N1fZQoaAZHQIxtZaRp1zRoB03oA2gIR0B6mmVu76HkdX2UKGgGR0CLFzpu/DceaAdN6ANoCEdAep+zundfs3V9lChoBkdAiLITByjpLWgHTegDaAhHQHsXbsOXmeV1fZQoaAZHQIlBDrX18LNoB03oA2gIR0B7hZSWJJoTdX2UKGgGR0CJugNsFdLQaAdN6ANoCEdAe5bHww0wanV9lChoBkdAgsD4nv2GqWgHTegDaAhHQHuZTfixVyZ1fZQoaAZHQIkwoHu7YkFoB03oA2gIR0B7wx2icoYvdX2UKGgGR0CJTlbFCLMtaAdN6ANoCEdAfDR3IdU83nV9lChoBkdAheRJmukk8mgHTegDaAhHQHxwufmLcbl1fZQoaAZHQIYxwWgvlEJoB03oA2gIR0B8dCRoysS1dX2UKGgGR0CKBfo4dZJTaAdN6ANoCEdAfLfV94NZvHV9lChoBkdAgoyPNFBppWgHTegDaAhHQH0VqEOAiFF1fZQoaAZHQIKmRp8F6iVoB03oA2gIR0B9LwU47zTXdX2UKGgGR0CB+LqdH2AYaAdN6ANoCEdAfTDHGCI1tXV9lChoBkdAhcOJDeCTU2gHTegDaAhHQH1VrbxmTTx1fZQoaAZHQIFfLUwztTloB03oA2gIR0B9rNgCwKSgdX2UKGgGR0CAmUUuctoSaAdN6ANoCEdAfb7cXWOIZnV9lChoBkdAf3uRkmQbM2gHTegDaAhHQH3ArxiG34N1fZQoaAZHQFeP2FWXC0poB0uXaAhHQH3WtkOI68x1fZQoaAZHQH+zqU7jkuJoB03oA2gIR0B93xIOH310dX2UKGgGR0CBx4J1JUYLaAdN6ANoCEdAfkMFrl/6PHV9lChoBkdAgRa+vQnhKmgHTegDaAhHQH5V4zeoDPp1fZQoaAZHQGb9iG34Kx9oB0v1aAhHQH5iPD+BH091fZQoaAZHQIKBbdBSk0toB03oA2gIR0B+ZdW6shgWdX2UKGgGR0CD2UkUsWfsaAdN6ANoCEdAfnHFpPAO8XV9lChoBkdAhTk/vOQhfWgHTegDaAhHQH7QHZoPCl91fZQoaAZHQIL8/hddE9doB03oA2gIR0B+2JR/EwWWdX2UKGgGR0CGtnBOYYzjaAdN6ANoCEdAfttKB/Zuh3V9lChoBkdAgsq3cxj8UGgHTegDaAhHQH7jHBUJfIF1fZQoaAZHQHmiZJsfq5doB02EAmgIR0B/GXci4axYdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 6250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1060b39a5aaddb4e1c9b9cb37c46bb9434e9c484f4592ee0446a07a267d6848
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a997918a42dfb154ce0647824442018a35ad8a635c114338de88e8fc7244b8c6
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.2.1-x86_64-i386-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:42:11 PST 2023; root:xnu-8792.81.3~2/RELEASE_X86_64
|
2 |
+
- Python: 3.10.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x136a01000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x136a01090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x136a01120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x136a011b0>", "_build": "<function ActorCriticPolicy._build at 0x136a01240>", "forward": "<function ActorCriticPolicy.forward at 0x136a012d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x136a01360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x136a013f0>", "_predict": "<function ActorCriticPolicy._predict at 0x136a01480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x136a01510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x136a015a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x136a01630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x135cdfa00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679615115413007000, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVUQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9Vc2Vycy95b2FuZ2FiaXNvbi9MaWJyYXJ5L0NhY2hlcy9weXBvZXRyeS92aXJ0dWFsZW52cy9ybC1jb3Vyc2UtNnZrc3VJWVctcHkzLjEwL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyPL1VzZXJzL3lvYW5nYWJpc29uL0xpYnJhcnkvQ2FjaGVzL3B5cG9ldHJ5L3ZpcnR1YWxlbnZzL3JsLWNvdXJzZS02dmtzdUlZVy1weTMuMTAvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG8+Jz+SjWq+bjntPoFD+L1HC1e9u5QePkT8Ir+xL1FAQCJ2P4XOXrva/3G/ictCvWzhyL9A9xK8zYAcwFlugz0DcJ4/An5pP9s1gL9b8Iq/5UEQwIpTnbwj1hW+X8ULvYq1tD63Q7I+g9pKwIoRhT5kfQxAuNjmvNhP1T6ceCy+B87POwuRCD5s1My+rGHFPjEcdT9y/9W8a1mMP2Bsa702AY++Gru9vPdA6L8+K4I9LsdFv+uFuT1kKyjA8nYyPbMPEMBDDc+7gvLyP5IMa72KtbQ+t0OyPgSJoT6KEYU+FBLdPz7Fb7uLW9E+4tpDv27sm7/eE+4+je89v3fk4z8rUXY/oDGVPYqok75Sspw+/3GxvwSJRz+uFhzAVKsYPjoqVT7L/bo+Ormpv7VcLEC2AxDA6FCSPUUrPz8RFBk+irW0PrdDsj6D2krAihGFPob7lD0qEd08vxjMPtcUGL5JAS25S6wKPsBl4b5lQxRA7EV1P37/HLyPSHK/GBdSveQcoL+f5Ei7nL45v8PYeD0w8lk/yZY4v2cn7r61qSk/A0IQwE8Pwrw16Pm+VJ1bvYq1tD63Q7I+g9pKwIoRhT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACr44u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgS05vQAAAAAXTt+/AAAAALA6Sb0AAAAAXb/9PwAAAABjwaO9AAAAAFo13T8AAAAAoPEivQAAAABms+O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzawNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHAsCr4AAAAA8cn5vwAAAACgscE9AAAAAOv56z8AAAAAv7qTPQAAAACMu+0/AAAAAGdipj0AAAAAaPX3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABItBDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhqrQ6AAAAANuc8b8AAAAAWSpWvQAAAADEPeg/AAAAAEA/aTsAAAAA7ezxPwAAAACZMxC+AAAAAGcs8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3APM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaFzevQAAAAAXy+q/AAAAAJ0McrwAAAAA0cPpPwAAAAAFcgs+AAAAABFv5z8AAAAACwi0vQAAAAAcyN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIM7xiLEUCeMAWyUTegDjAF0lEdAb9jJmNBF/nV9lChoBkdAgx1Sh8IAwWgHTegDaAhHQHApKJyhi9Z1fZQoaAZHQIA937YTTORoB03oA2gIR0BwTVV7x/d7dX2UKGgGR0CILUxVyWAxaAdN6ANoCEdAcF11fVqesnV9lChoBkdAiWKePaL4vmgHTegDaAhHQHBwtZJTVDt1fZQoaAZHQIYsGY+jdpJoB03oA2gIR0BwoednTRYzdX2UKGgGR0CFG4ohIOH4aAdN6ANoCEdAcLk5wwTM7nV9lChoBkdAh1pCRfWtl2gHTegDaAhHQHDIZvo/zJ91fZQoaAZHQHqGHkgfU4JoB03oA2gIR0Bw92udPLxJdX2UKGgGR0CIF7IK+i8GaAdN6ANoCEdAcY1RBNVR13V9lChoBkdAh6HH1WbPQmgHTegDaAhHQHG/9/4Irvt1fZQoaAZHQIQRmBnSOR1oB03oA2gIR0Bx10PH1e0HdX2UKGgGR0CJWnIYFaB7aAdN6ANoCEdAcfBJ8v24/nV9lChoBkdAEVFyaNMoMWgHSxhoCEdAcfOSlWOp9HV9lChoBkdAhqWb9AHE/GgHTegDaAhHQHIn2pVCHAR1fZQoaAZHQIeGUjeKsMloB03oA2gIR0ByRjQ+lj3FdX2UKGgGRz/7g+IMz/IbaAdLFWgIR0ByR/wUg0TDdX2UKGgGR0CGMC371qWUaAdN6ANoCEdAclF0cOskp3V9lChoBkdARLbUy57PZGgHS1NoCEdAclhkD6nBL3V9lChoBkdAYqujtXxOL2gHS/FoCEdAclvLgGbCrXV9lChoBkdAh57dI5HVgGgHTegDaAhHQHJhL9ZRsM11fZQoaAZHQHH7934bjtJoB03GAWgIR0ByihvwVj7RdX2UKGgGR0CGtJpcHGCJaAdN6ANoCEdAcoy3CsOoYXV9lChoBkdAg+UGz8gp0GgHTegDaAhHQHLAP/m1YyR1fZQoaAZHQINZPLq2SdRoB03oA2gIR0ByzM+jdpIudX2UKGgGR0B+9i3PRiPRaAdNhgNoCEdAcvU2lEZzgnV9lChoBkdAiPpTCLuQZGgHTegDaAhHQHL/xZha1Tl1fZQoaAZHQIWBcGLUCq9oB03oA2gIR0BzPUazeGfxdX2UKGgGR0CCTmaaTfSAaAdN6ANoCEdAc1Buk1uR93V9lChoBkdAQnzHlwLmZGgHS2hoCEdAc3CcFQl8gXV9lChoBkdAg+WFolD4QGgHTegDaAhHQHOMsINVinZ1fZQoaAZHQIcajJMg2ZRoB03oA2gIR0BzsrKNhmXgdX2UKGgGR0CF3ai48U22aAdN6ANoCEdAc/Nd9Ujs2XV9lChoBkdAh+ZzTvy9VWgHTegDaAhHQHQKRgy/KyR1fZQoaAZHQIoE586V+qloB03oA2gIR0B0GWCnP3SKdX2UKGgGR0CFxLz5GjKxaAdN6ANoCEdAdCRNHYpUgnV9lChoBkdARArneSB9TmgHS0hoCEdAdCpfdRBNVXV9lChoBkdAeu+UKArhBWgHTVcCaAhHQHRABreqJdl1fZQoaAZHQIgl9qFh5PdoB03oA2gIR0B0VjPv8ZUDdX2UKGgGR0CFl9B7eEZjaAdN6ANoCEdAdKzd92HLzXV9lChoBkdAdUVI1cdHUmgHTc4BaAhHQHTBBF/hESd1fZQoaAZHQIosrj7yhBZoB03oA2gIR0B1DxTxXnyNdX2UKGgGR0CH4ZHggow3aAdN6ANoCEdAdXmLq2SdOXV9lChoBkdAg2abkOqeb2gHTegDaAhHQHXZEJOWSlp1fZQoaAZHQIcflirksBhoB03oA2gIR0B14OVpsXSCdX2UKGgGR0A0EBJZntfHaAdLTmgIR0B149CAtnPFdX2UKGgGR0CB+gPo3aSLaAdN6ANoCEdAdfg8BuGbkXV9lChoBkdAhUl3cHnln2gHTegDaAhHQHYlQ3PzFuN1fZQoaAZHQIW8K7Ackt5oB03oA2gIR0B2jxDKHO8kdX2UKGgGR0CJbvTS9du6aAdN6ANoCEdAdpF/u9eyA3V9lChoBkdAOaaFVT72tmgHS21oCEdAdp7qo60Y0nV9lChoBkdAiAYuXNTtLWgHTegDaAhHQHagPXCj1wp1fZQoaAZHQIZ/8+C9RJpoB03oA2gIR0B2urAO8TSLdX2UKGgGR0CHadNqQA+7aAdN6ANoCEdAd08717IDHXV9lChoBkdAiMh8VQAMlWgHTegDaAhHQHeVhmTTvy91fZQoaAZHQIgxdtCRfWtoB03oA2gIR0B3mVdWyTpxdX2UKGgGR0CH+1MCcPOIaAdN6ANoCEdAd8/as6q82HV9lChoBkdAhsCyuyNXHWgHTegDaAhHQHhyDFdcB2h1fZQoaAZHQIrE4XQ+lj5oB03oA2gIR0B4hZ/PPcBVdX2UKGgGR0CHjGX531SPaAdN6ANoCEdAeIeldC3PRnV9lChoBkdAibqC6pYLcGgHTegDaAhHQHinW7SRbKR1fZQoaAZHQIencBuGbkRoB03oA2gIR0B5UuROk+HKdX2UKGgGR0CJ+YPkJa7maAdN6ANoCEdAeXViwjdHlXV9lChoBkdAiClUQ9RrJ2gHTegDaAhHQHl3SYgJTl11fZQoaAZHQIuELZYgaFVoB03oA2gIR0B5lUZrHlwMdX2UKGgGR0CIviQXAM2FaAdN6ANoCEdAeevhBqsU7HV9lChoBkdAijABcZ9/jWgHTegDaAhHQHn6S3w1BMV1fZQoaAZHQIvCAjt5UtJoB03oA2gIR0B5+7+aScLCdX2UKGgGR0CIlYOkLx7RaAdN6ANoCEdAeiE2AoXsPnV9lChoBkdAg8PePRzBAWgHTegDaAhHQHqFI4Ia99N1fZQoaAZHQIxtZaRp1zRoB03oA2gIR0B6mmVu76HkdX2UKGgGR0CLFzpu/DceaAdN6ANoCEdAep+zundfs3V9lChoBkdAiLITByjpLWgHTegDaAhHQHsXbsOXmeV1fZQoaAZHQIlBDrX18LNoB03oA2gIR0B7hZSWJJoTdX2UKGgGR0CJugNsFdLQaAdN6ANoCEdAe5bHww0wanV9lChoBkdAgsD4nv2GqWgHTegDaAhHQHuZTfixVyZ1fZQoaAZHQIkwoHu7YkFoB03oA2gIR0B7wx2icoYvdX2UKGgGR0CJTlbFCLMtaAdN6ANoCEdAfDR3IdU83nV9lChoBkdAheRJmukk8mgHTegDaAhHQHxwufmLcbl1fZQoaAZHQIYxwWgvlEJoB03oA2gIR0B8dCRoysS1dX2UKGgGR0CKBfo4dZJTaAdN6ANoCEdAfLfV94NZvHV9lChoBkdAgoyPNFBppWgHTegDaAhHQH0VqEOAiFF1fZQoaAZHQIKmRp8F6iVoB03oA2gIR0B9LwU47zTXdX2UKGgGR0CB+LqdH2AYaAdN6ANoCEdAfTDHGCI1tXV9lChoBkdAhcOJDeCTU2gHTegDaAhHQH1VrbxmTTx1fZQoaAZHQIFfLUwztTloB03oA2gIR0B9rNgCwKSgdX2UKGgGR0CAmUUuctoSaAdN6ANoCEdAfb7cXWOIZnV9lChoBkdAf3uRkmQbM2gHTegDaAhHQH3ArxiG34N1fZQoaAZHQFeP2FWXC0poB0uXaAhHQH3WtkOI68x1fZQoaAZHQH+zqU7jkuJoB03oA2gIR0B93xIOH310dX2UKGgGR0CBx4J1JUYLaAdN6ANoCEdAfkMFrl/6PHV9lChoBkdAgRa+vQnhKmgHTegDaAhHQH5V4zeoDPp1fZQoaAZHQGb9iG34Kx9oB0v1aAhHQH5iPD+BH091fZQoaAZHQIKBbdBSk0toB03oA2gIR0B+ZdW6shgWdX2UKGgGR0CD2UkUsWfsaAdN6ANoCEdAfnHFpPAO8XV9lChoBkdAhTk/vOQhfWgHTegDaAhHQH7QHZoPCl91fZQoaAZHQIL8/hddE9doB03oA2gIR0B+2JR/EwWWdX2UKGgGR0CGtnBOYYzjaAdN6ANoCEdAfttKB/Zuh3V9lChoBkdAgsq3cxj8UGgHTegDaAhHQH7jHBUJfIF1fZQoaAZHQHmiZJsfq5doB02EAmgIR0B/GXci4axYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "macOS-13.2.1-x86_64-i386-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:42:11 PST 2023; root:xnu-8792.81.3~2/RELEASE_X86_64", "Python": "3.10.10", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (217 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 715.6946624764416, "std_reward": 25.927746992151583, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T01:05:48.754227"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1044a89e9fa9cd01a7f0840b3bb8501ea50cfad4f659691f14e12a6e2b8514e
|
3 |
+
size 2136
|