import argparse import json import tqdm import cv2 import os import numpy as np import random from pycocotools.mask import encode, decode, frPyObjects EVALMODE = "test" def fuse_mask(mask_list): fused_mask = np.zeros_like(mask_list[0]) for mask in mask_list: fused_mask[mask == 1] = 1 return fused_mask def blend_mask(input_img, binary_mask, alpha=0.5, color="g"): if input_img.ndim == 2: return input_img mask_image = np.zeros(input_img.shape, np.uint8) if color == "r": mask_image[:, :, 0] = 255 if color == "g": mask_image[:, :, 1] = 255 if color == "b": mask_image[:, :, 2] = 255 if color == "o": mask_image[:, :, 0] = 255 mask_image[:, :, 1] = 165 mask_image[:, :, 2] = 0 if color == "c": mask_image[:, :, 0] = 0 mask_image[:, :, 1] = 255 mask_image[:, :, 2] = 255 if color == "p": mask_image[:, :, 0] = 128 mask_image[:, :, 1] = 0 mask_image[:, :, 2] = 128 mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2) blend_image = input_img[:, :, :].copy() pos_idx = binary_mask > 0 for ind in range(input_img.ndim): ch_img1 = input_img[:, :, ind] ch_img2 = mask_image[:, :, ind] ch_img3 = blend_image[:, :, ind] ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx] blend_image[:, :, ind] = ch_img3 return blend_image def upsample_mask(mask, frame): H, W = frame.shape[:2] mH, mW = mask.shape[:2] if W > H: ratio = mW / W h = H * ratio diff = int((mH - h) // 2) if diff == 0: mask = mask else: mask = mask[diff:-diff] else: ratio = mH / H w = W * ratio diff = int((mW - w) // 2) if diff == 0: mask = mask else: mask = mask[:, diff:-diff] mask = cv2.resize(mask, (W, H)) return mask def downsample(mask, frame): H, W = frame.shape[:2] mH, mW = mask.shape[:2] mask = cv2.resize(mask, (W, H)) return mask if __name__ == "__main__": color = ['g', 'r', 'b', 'o', 'c', 'p'] data_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL" json_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL_results/xmem_handal.json" #debug output_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL/vis_rondom_check/xmem" with open(json_path, "r") as fp: datas = json.load(fp) # datas = random.sample(datas, 10) for data in datas: video_name = data["image"].split("/")[0] name = data["image"].split("/")[-1] frame_idx = name.split(".")[0] #target gt frame_target = cv2.imread( f"{data_path}/{data['image']}" ) # for check xmem predicted result mask = decode(data["pred_mask"]) mask = downsample(mask, frame_target) out = blend_mask(frame_target, mask, color=color[0]) os.makedirs( f"{output_path}/xmem", #debug exist_ok=True, ) cv2.imwrite( f"{output_path}/xmem/{frame_idx}.jpg", #debug out, ) # for check handal original json # for i,ann in enumerate(data["anns"]): # mask = decode(ann["segmentation"]) # mask = downsample(mask, frame_target) # out = blend_mask(frame_target, mask, color=color[0]) # os.makedirs( # f"{output_path}/{video_name}/target_gt", #debug # exist_ok=True, # ) # cv2.imwrite( # f"{output_path}/{video_name}/target_gt/{frame_idx}.jpg", #debug # out, # ) # #query gt # frame_query = cv2.imread( # f"{data_path}/{data['first_frame_image']}" # ) # for i,ann in enumerate(data["first_frame_anns"]): # mask = decode(ann["segmentation"]) # mask = downsample(mask, frame_query) # out = blend_mask(frame_query, mask, color=color[0]) # os.makedirs( # f"{output_path}/{video_name}/query_gt", #debug # exist_ok=True, # ) # cv2.imwrite( # f"{output_path}/{video_name}/query_gt/{frame_idx}.jpg", #debug # out, # )