import numpy as np import cv2 import metrics def eval_mask(gt_masks: np.ndarray, fake_masks: np.ndarray): """TODO: Docstring for eval_mask. Args: gt_masks (np.ndarray): The fake_masks (np.ndarray): TODO Returns: TODO """ iou = metrics.db_eval_iou(gt_masks, fake_masks) boundary = metrics.db_eval_boundary(gt_masks, fake_masks) return iou, boundary def existence_accuracy(gt_mask: np.ndarray, pred_mask: np.ndarray): gt_zeros = np.all(gt_mask == 0) pred_zeros = np.all(pred_mask == 0) return gt_zeros == pred_zeros def location_score(gt_mask, pred_mask, size=(480, 480)): H, W = size (gt_size, pred_size), (centroid_gt, centroid_pred), (gt_compact_mask, pred_compact_mask) = metrics.crop_mask(gt_mask, pred_mask) centroid_distance = np.sqrt((centroid_gt[0] - centroid_pred[0])**2 + (centroid_gt[1] - centroid_pred[1])**2) lscore = centroid_distance / np.sqrt(H**2 + W**2) return lscore