--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: code-bench-Mistral-7B-text-to-sql-v1 results: [] --- # code-bench-Mistral-7B-text-to-sql-v1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8246 | 0.0619 | 10 | 0.7742 | | 0.6351 | 0.1238 | 20 | 0.7373 | | 0.573 | 0.1858 | 30 | 0.5941 | | 0.5628 | 0.2477 | 40 | 0.5330 | | 0.5169 | 0.3096 | 50 | 0.5149 | | 0.5002 | 0.3715 | 60 | 0.4909 | | 0.4825 | 0.4334 | 70 | 0.4721 | | 0.466 | 0.4954 | 80 | 0.4628 | | 0.4523 | 0.5573 | 90 | 0.4580 | | 0.4536 | 0.6192 | 100 | 0.4474 | | 0.4435 | 0.6811 | 110 | 0.4356 | | 0.4399 | 0.7430 | 120 | 0.4318 | | 0.4073 | 0.8050 | 130 | 0.4261 | | 0.4372 | 0.8669 | 140 | 0.4198 | | 0.4046 | 0.9288 | 150 | 0.4135 | | 0.3836 | 0.9907 | 160 | 0.4131 | | 0.2902 | 1.0526 | 170 | 0.4158 | | 0.3228 | 1.1146 | 180 | 0.4141 | | 0.3094 | 1.1765 | 190 | 0.4167 | | 0.294 | 1.2384 | 200 | 0.4127 | | 0.3081 | 1.3003 | 210 | 0.4047 | | 0.285 | 1.3622 | 220 | 0.4034 | | 0.2814 | 1.4241 | 230 | 0.4065 | | 0.2649 | 1.4861 | 240 | 0.4016 | | 0.2715 | 1.5480 | 250 | 0.3956 | | 0.2715 | 1.6099 | 260 | 0.3967 | | 0.2768 | 1.6718 | 270 | 0.3914 | | 0.2618 | 1.7337 | 280 | 0.3905 | | 0.2663 | 1.7957 | 290 | 0.3887 | | 0.2639 | 1.8576 | 300 | 0.3844 | | 0.2601 | 1.9195 | 310 | 0.3831 | | 0.2625 | 1.9814 | 320 | 0.3808 | | 0.1607 | 2.0433 | 330 | 0.4298 | | 0.1505 | 2.1053 | 340 | 0.4149 | | 0.1483 | 2.1672 | 350 | 0.4370 | | 0.1597 | 2.2291 | 360 | 0.4287 | | 0.1456 | 2.2910 | 370 | 0.4301 | | 0.1567 | 2.3529 | 380 | 0.4304 | | 0.1469 | 2.4149 | 390 | 0.4247 | | 0.1539 | 2.4768 | 400 | 0.4291 | | 0.1546 | 2.5387 | 410 | 0.4330 | | 0.1434 | 2.6006 | 420 | 0.4297 | | 0.1387 | 2.6625 | 430 | 0.4301 | | 0.1491 | 2.7245 | 440 | 0.4302 | | 0.1538 | 2.7864 | 450 | 0.4298 | | 0.1445 | 2.8483 | 460 | 0.4299 | | 0.1405 | 2.9102 | 470 | 0.4299 | | 0.1392 | 2.9721 | 480 | 0.4298 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.5.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1