bethrezen commited on
Commit
2064559
·
verified ·
1 Parent(s): 155d7c1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-4b-it
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:./google/gemma-3-4b-it
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.16.0
adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-3-4b-it",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 384,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 384,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": "model.language_model.layers.[\\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj",
31
+ "task_type": "CAUSAL_LM",
32
+ "trainable_token_indices": null,
33
+ "use_dora": false,
34
+ "use_qalora": false,
35
+ "use_rslora": false
36
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c29ef38ad3200ae8df163753abb2c8f3af7c8658ed2c2a21d91b5418b9e71f7
3
+ size 4115603480
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 262146,
3
+ "</tool_response>": 262148,
4
+ "<image_soft_token>": 262144,
5
+ "<think>": 262145,
6
+ "<tool_response>": 262147
7
+ }
chat_template.jinja ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#- Begin-of-sequence token to start the model prompt -#}
2
+ {{ bos_token }}
3
+ {#- Extracts the system message. Gemma does not support system messages so it will be prepended to first user message. -#}
4
+ {%- if messages[0]['role'] == 'system' -%}
5
+ {%- if messages[0]['content'] is string -%}
6
+ {%- set system_message = messages[0]['content'] -%}
7
+ {%- else -%}
8
+ {%- set system_message = messages[0]['content'][0]['text'] -%}
9
+ {%- endif -%}
10
+ {%- set loop_messages = messages[1:] -%}
11
+ {%- else -%}
12
+ {%- set system_message = "You are a helpful assistant Zero-Gemma made by ZeroAgency company from Russia. You must be helpful, harmless, and honest." -%}
13
+ {%- set loop_messages = messages -%}
14
+ {%- endif -%}
15
+
16
+ {%- if enable_thinking is defined and enable_thinking is true -%}
17
+ {%- set system_message = system_message + "\nFirst, think through the reasoning internally, then present the reasoning within <think>...</think>. After thinking, clearly state a response that addresses the user's request and aligns with their preferences, not just providing a direct answer." -%}
18
+ {%- endif -%}
19
+
20
+ {%- set system_message = system_message + '\n\n' -%}
21
+ {#- Set tools to none if not defined for this ChatCompletion request (helps avoid errors later) -#}
22
+ {%- if not tools is defined -%}
23
+ {%- set tools = none -%}
24
+ {%- endif -%}
25
+
26
+ {#- First - system message -#}
27
+
28
+ {{ '<start_of_turn>system\n' -}}
29
+ {{ system_message }}
30
+ {#- Append system message with tool information if using tools in message request. -#}
31
+ {%- if tools is not none -%}
32
+ {{- "Tools (functions) are available. If you decide to invoke one or more of the tools, you must respond with a python list of the function calls.\n" -}}
33
+ {{- "Example Format: [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] \n" -}}
34
+ {{- "Do not use variables. DO NOT USE MARKDOWN SYNTAX. You SHOULD NOT include any other text in the response if you call a function. If none of the functions can be used, point it out. If you lack the parameters required by the function, also point it out.\n" -}}
35
+ {{- "Here is a list of functions in JSON format that you can invoke.\n" -}}
36
+ {{- tools | tojson(indent=4) -}}
37
+ {{- "\n\n" -}}
38
+ {%- endif -%}
39
+ {{ '<end_of_turn>\n' }}
40
+
41
+ {#- Main loop over all messages in the conversation history -#}
42
+ {%- for message in loop_messages if message['role'] != 'system' -%}
43
+ {#- Normalize roles for model prompt formatting -#}
44
+ {%- if (message['role'] == 'assistant') -%}
45
+ {%- set role = "model" -%}
46
+ {%- elif (message['role'] == 'tool') -%}
47
+ {%- set role = "user" -%}
48
+ {%- else -%}
49
+ {%- set role = message['role'] -%}
50
+ {%- endif -%}
51
+ {#- Mark the start of a message block with the appropriate role -#}
52
+ {{ '<start_of_turn>' + role + '\n' -}}
53
+
54
+ {#- Format model tool calls (turns where model indicates they want to call a tool) -#}
55
+ {%- if 'tool_calls' in message -%}
56
+ {%- if message['content'] is string -%}
57
+ {%- set content = message['content'] -%}
58
+ {# {%- if '</think>' in content -%} #}
59
+ {{- content | trim -}}
60
+ {# {{- "\n" -}} #}
61
+ {# {%- endif -%} #}
62
+ {%- endif -%}
63
+ {#- Opening bracket for tool call list. -#}
64
+ {{- '[' -}}
65
+ {#- For each tool call -#}
66
+ {%- for tool_call in message.tool_calls -%}
67
+ {#- Function name & opening parenthesis. -#}
68
+ {%- if tool_call.function is defined -%}
69
+ {%- set tool_call = tool_call.function -%}
70
+ {%- endif -%}
71
+ {{- tool_call.name + '(' -}}
72
+
73
+ {#-- Handle arguments as list (positional) or dict (named) --#}
74
+ {#-- Named arguments (dict) --#}
75
+ {%- if tool_call.arguments is iterable and tool_call.arguments is mapping -%}
76
+ {%- set first = true -%}
77
+ {%- for key, val in tool_call.arguments.items() -%}
78
+ {%- if not first %}, {% endif -%}
79
+ {{ key }}={{ val | tojson }}
80
+ {%- set first = false -%}
81
+ {%- endfor -%}
82
+ {#-- Positional arguments (list) --#}
83
+ {%- elif tool_call.arguments is iterable -%}
84
+ {{- tool_call.arguments | map('tojson') | join(', ') -}}
85
+ {#-- Fallback: single positional value --#}
86
+ {%- else -%}
87
+ {{- tool_call.arguments | tojson -}}
88
+ {#-- Closing parenthesis. --#}
89
+ {%- endif -%}
90
+ {{- ')' -}}
91
+ {#-- If more than one tool call, place comma and move to formatting next tool call --#}
92
+ {%- if not loop.last -%}{{- "," -}}{%- endif -%}
93
+ {%- endfor -%}
94
+ {#- Closing bracket for tool call list. -#}
95
+ {{- ']' -}}
96
+ {%- endif -%}
97
+
98
+ {#- Tool response start tag (for messages from a tool) -#}
99
+ {%- if (message['role'] == 'tool') -%}
100
+ {{- '<tool_response>\n' -}}
101
+ {%- endif -%}
102
+
103
+ {#- Render the message content: handle plain string or multimodal content like image/text -#}
104
+ {%- if not 'tool_calls' in message and message['content'] -%}
105
+ {%- if message['content'] is string -%}
106
+ {%- set content = message['content'] -%}
107
+ {# {%- if '</think>' in content -%}
108
+ {%- set content = content.split('</think>')[-1] -%}
109
+ {%- endif -%} #}
110
+ {{- content | trim -}}
111
+ {%- elif message['content'] is iterable -%}
112
+ {%- for item in message['content'] -%}
113
+ {%- if item['type'] == 'image' -%}
114
+ {{ '<start_of_image>' }}
115
+ {%- elif item['type'] == 'text' -%}
116
+ {%- set content = item['text'] -%}
117
+ {# {%- if '</think>' in content -%}
118
+ {%- set content = content.split('</think>')[-1] -%}
119
+ {%- endif -%} #}
120
+ {{ content | trim }}
121
+ {%- endif -%}
122
+ {%- endfor -%}
123
+ {%- else -%}
124
+ {{ raise_exception("Invalid content type:"+ message|tojson) }}
125
+ {%- endif -%}
126
+ {%- endif -%}
127
+
128
+ {#- Tool response end tag -#}
129
+ {%- if (message['role'] == 'tool') -%}
130
+ {{ '</tool_response>' -}}
131
+ {%- endif -%}
132
+
133
+ {#- Mark end of a single turn -#}
134
+ {{ '<end_of_turn>\n' }}
135
+ {%- endfor -%}
136
+
137
+ {#- If generation is to be triggered, add model prompt prefix -#}
138
+ {%- if add_generation_prompt -%}
139
+ {{'<start_of_turn>model\n'}}
140
+ {%- if enable_thinking is defined and enable_thinking is true -%}
141
+ {{- '<think>' -}}
142
+ {%- endif %}
143
+ {%- endif -%}
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<think>",
4
+ "</think>",
5
+ "<tool_response>",
6
+ "</tool_response>"
7
+ ],
8
+ "boi_token": "<start_of_image>",
9
+ "bos_token": {
10
+ "content": "<bos>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eoi_token": "<end_of_image>",
17
+ "eos_token": {
18
+ "content": "<eos>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "image_token": "<image_soft_token>",
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace60e8c8d65bc69ad0992f5400b9a0ebb9a4b454def4a6595f8d6f7952fd245
3
+ size 33385322
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,2374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 288,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0,
14
+ "eval_loss": 4.371264934539795,
15
+ "eval_num_tokens": 0.0,
16
+ "eval_runtime": 29.4614,
17
+ "eval_samples_per_second": 75.115,
18
+ "eval_steps_per_second": 2.376,
19
+ "step": 0
20
+ },
21
+ {
22
+ "epoch": 0.010416666666666666,
23
+ "grad_norm": 52.149383544921875,
24
+ "learning_rate": 0.0,
25
+ "loss": 15.0648,
26
+ "num_tokens": 1835008.0,
27
+ "step": 1
28
+ },
29
+ {
30
+ "epoch": 0.020833333333333332,
31
+ "grad_norm": 51.116416931152344,
32
+ "learning_rate": 6.896551724137932e-06,
33
+ "loss": 14.6347,
34
+ "num_tokens": 3669884.0,
35
+ "step": 2
36
+ },
37
+ {
38
+ "epoch": 0.03125,
39
+ "grad_norm": 42.77839660644531,
40
+ "learning_rate": 1.3793103448275863e-05,
41
+ "loss": 12.7417,
42
+ "num_tokens": 5504456.0,
43
+ "step": 3
44
+ },
45
+ {
46
+ "epoch": 0.041666666666666664,
47
+ "grad_norm": 21.081525802612305,
48
+ "learning_rate": 2.0689655172413793e-05,
49
+ "loss": 11.2837,
50
+ "num_tokens": 7338518.0,
51
+ "step": 4
52
+ },
53
+ {
54
+ "epoch": 0.052083333333333336,
55
+ "grad_norm": 12.225955963134766,
56
+ "learning_rate": 2.7586206896551727e-05,
57
+ "loss": 9.6522,
58
+ "num_tokens": 9171273.0,
59
+ "step": 5
60
+ },
61
+ {
62
+ "epoch": 0.0625,
63
+ "grad_norm": 22.207218170166016,
64
+ "learning_rate": 3.4482758620689657e-05,
65
+ "loss": 13.6798,
66
+ "num_tokens": 10989860.0,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.07291666666666667,
71
+ "grad_norm": 14.794663429260254,
72
+ "learning_rate": 4.1379310344827587e-05,
73
+ "loss": 11.2003,
74
+ "num_tokens": 12762151.0,
75
+ "step": 7
76
+ },
77
+ {
78
+ "epoch": 0.08333333333333333,
79
+ "grad_norm": 12.77396297454834,
80
+ "learning_rate": 4.827586206896552e-05,
81
+ "loss": 9.6115,
82
+ "num_tokens": 14597063.0,
83
+ "step": 8
84
+ },
85
+ {
86
+ "epoch": 0.09375,
87
+ "grad_norm": 10.279570579528809,
88
+ "learning_rate": 5.517241379310345e-05,
89
+ "loss": 8.8284,
90
+ "num_tokens": 16431725.0,
91
+ "step": 9
92
+ },
93
+ {
94
+ "epoch": 0.10416666666666667,
95
+ "grad_norm": 8.187755584716797,
96
+ "learning_rate": 6.206896551724138e-05,
97
+ "loss": 8.3131,
98
+ "num_tokens": 18265899.0,
99
+ "step": 10
100
+ },
101
+ {
102
+ "epoch": 0.11458333333333333,
103
+ "grad_norm": 5.445209503173828,
104
+ "learning_rate": 6.896551724137931e-05,
105
+ "loss": 8.0208,
106
+ "num_tokens": 20099095.0,
107
+ "step": 11
108
+ },
109
+ {
110
+ "epoch": 0.125,
111
+ "grad_norm": 6.53316068649292,
112
+ "learning_rate": 7.586206896551724e-05,
113
+ "loss": 8.0089,
114
+ "num_tokens": 21927060.0,
115
+ "step": 12
116
+ },
117
+ {
118
+ "epoch": 0.13541666666666666,
119
+ "grad_norm": 9.994010925292969,
120
+ "learning_rate": 8.275862068965517e-05,
121
+ "loss": 8.1674,
122
+ "num_tokens": 23686539.0,
123
+ "step": 13
124
+ },
125
+ {
126
+ "epoch": 0.14583333333333334,
127
+ "grad_norm": 5.84063196182251,
128
+ "learning_rate": 8.96551724137931e-05,
129
+ "loss": 7.9024,
130
+ "num_tokens": 25521502.0,
131
+ "step": 14
132
+ },
133
+ {
134
+ "epoch": 0.15625,
135
+ "grad_norm": 4.530292987823486,
136
+ "learning_rate": 9.655172413793105e-05,
137
+ "loss": 7.7778,
138
+ "num_tokens": 27356195.0,
139
+ "step": 15
140
+ },
141
+ {
142
+ "epoch": 0.16666666666666666,
143
+ "grad_norm": 3.1736268997192383,
144
+ "learning_rate": 0.00010344827586206898,
145
+ "loss": 7.5457,
146
+ "num_tokens": 29190486.0,
147
+ "step": 16
148
+ },
149
+ {
150
+ "epoch": 0.17708333333333334,
151
+ "grad_norm": 3.9896769523620605,
152
+ "learning_rate": 0.0001103448275862069,
153
+ "loss": 7.4311,
154
+ "num_tokens": 31024087.0,
155
+ "step": 17
156
+ },
157
+ {
158
+ "epoch": 0.1875,
159
+ "grad_norm": 3.630253553390503,
160
+ "learning_rate": 0.00011724137931034482,
161
+ "loss": 7.227,
162
+ "num_tokens": 32855321.0,
163
+ "step": 18
164
+ },
165
+ {
166
+ "epoch": 0.19791666666666666,
167
+ "grad_norm": 3.98490047454834,
168
+ "learning_rate": 0.00012413793103448277,
169
+ "loss": 5.8909,
170
+ "num_tokens": 34641448.0,
171
+ "step": 19
172
+ },
173
+ {
174
+ "epoch": 0.20833333333333334,
175
+ "grad_norm": 4.179741859436035,
176
+ "learning_rate": 0.00013103448275862068,
177
+ "loss": 7.1386,
178
+ "num_tokens": 36476456.0,
179
+ "step": 20
180
+ },
181
+ {
182
+ "epoch": 0.21875,
183
+ "grad_norm": 3.653348684310913,
184
+ "learning_rate": 0.00013793103448275863,
185
+ "loss": 7.3049,
186
+ "num_tokens": 38311233.0,
187
+ "step": 21
188
+ },
189
+ {
190
+ "epoch": 0.22916666666666666,
191
+ "grad_norm": 1.8011902570724487,
192
+ "learning_rate": 0.00014482758620689657,
193
+ "loss": 7.3865,
194
+ "num_tokens": 40145678.0,
195
+ "step": 22
196
+ },
197
+ {
198
+ "epoch": 0.23958333333333334,
199
+ "grad_norm": 2.962880849838257,
200
+ "learning_rate": 0.00015172413793103449,
201
+ "loss": 7.1742,
202
+ "num_tokens": 41979519.0,
203
+ "step": 23
204
+ },
205
+ {
206
+ "epoch": 0.25,
207
+ "grad_norm": 2.545250177383423,
208
+ "learning_rate": 0.00015862068965517243,
209
+ "loss": 6.9464,
210
+ "num_tokens": 43811766.0,
211
+ "step": 24
212
+ },
213
+ {
214
+ "epoch": 0.2604166666666667,
215
+ "grad_norm": 3.547168254852295,
216
+ "learning_rate": 0.00016551724137931035,
217
+ "loss": 5.0189,
218
+ "num_tokens": 45557051.0,
219
+ "step": 25
220
+ },
221
+ {
222
+ "epoch": 0.2708333333333333,
223
+ "grad_norm": 3.0412774085998535,
224
+ "learning_rate": 0.00017241379310344826,
225
+ "loss": 6.9082,
226
+ "num_tokens": 47392059.0,
227
+ "step": 26
228
+ },
229
+ {
230
+ "epoch": 0.28125,
231
+ "grad_norm": 2.2950937747955322,
232
+ "learning_rate": 0.0001793103448275862,
233
+ "loss": 7.2282,
234
+ "num_tokens": 49226914.0,
235
+ "step": 27
236
+ },
237
+ {
238
+ "epoch": 0.2916666666666667,
239
+ "grad_norm": 2.410656452178955,
240
+ "learning_rate": 0.00018620689655172415,
241
+ "loss": 7.1382,
242
+ "num_tokens": 51061477.0,
243
+ "step": 28
244
+ },
245
+ {
246
+ "epoch": 0.3020833333333333,
247
+ "grad_norm": 2.726811170578003,
248
+ "learning_rate": 0.0001931034482758621,
249
+ "loss": 7.2778,
250
+ "num_tokens": 52895540.0,
251
+ "step": 29
252
+ },
253
+ {
254
+ "epoch": 0.3125,
255
+ "grad_norm": 1.3566060066223145,
256
+ "learning_rate": 0.0002,
257
+ "loss": 6.8058,
258
+ "num_tokens": 54728495.0,
259
+ "step": 30
260
+ },
261
+ {
262
+ "epoch": 0.3229166666666667,
263
+ "grad_norm": 2.3010756969451904,
264
+ "learning_rate": 0.0001999926436074355,
265
+ "loss": 5.614,
266
+ "num_tokens": 56547945.0,
267
+ "step": 31
268
+ },
269
+ {
270
+ "epoch": 0.3333333333333333,
271
+ "grad_norm": 2.086775302886963,
272
+ "learning_rate": 0.00019997057551207221,
273
+ "loss": 6.1411,
274
+ "num_tokens": 58335361.0,
275
+ "step": 32
276
+ },
277
+ {
278
+ "epoch": 0.34375,
279
+ "grad_norm": 2.037832498550415,
280
+ "learning_rate": 0.0001999337989607416,
281
+ "loss": 7.1009,
282
+ "num_tokens": 60170309.0,
283
+ "step": 33
284
+ },
285
+ {
286
+ "epoch": 0.3541666666666667,
287
+ "grad_norm": 1.5545268058776855,
288
+ "learning_rate": 0.00019988231936429865,
289
+ "loss": 7.1493,
290
+ "num_tokens": 62004989.0,
291
+ "step": 34
292
+ },
293
+ {
294
+ "epoch": 0.3645833333333333,
295
+ "grad_norm": 2.550959825515747,
296
+ "learning_rate": 0.00019981614429682575,
297
+ "loss": 6.8761,
298
+ "num_tokens": 63839187.0,
299
+ "step": 35
300
+ },
301
+ {
302
+ "epoch": 0.375,
303
+ "grad_norm": 2.005693197250366,
304
+ "learning_rate": 0.00019973528349451837,
305
+ "loss": 6.9338,
306
+ "num_tokens": 65672410.0,
307
+ "step": 36
308
+ },
309
+ {
310
+ "epoch": 0.3854166666666667,
311
+ "grad_norm": 1.62908935546875,
312
+ "learning_rate": 0.00019963974885425266,
313
+ "loss": 6.2837,
314
+ "num_tokens": 67500466.0,
315
+ "step": 37
316
+ },
317
+ {
318
+ "epoch": 0.3958333333333333,
319
+ "grad_norm": 1.622885823249817,
320
+ "learning_rate": 0.0001995295544318349,
321
+ "loss": 5.4648,
322
+ "num_tokens": 69256656.0,
323
+ "step": 38
324
+ },
325
+ {
326
+ "epoch": 0.40625,
327
+ "grad_norm": 1.3703619241714478,
328
+ "learning_rate": 0.0001994047164399338,
329
+ "loss": 6.7164,
330
+ "num_tokens": 71091624.0,
331
+ "step": 39
332
+ },
333
+ {
334
+ "epoch": 0.4166666666666667,
335
+ "grad_norm": 1.7858023643493652,
336
+ "learning_rate": 0.00019926525324569472,
337
+ "loss": 7.1825,
338
+ "num_tokens": 72926315.0,
339
+ "step": 40
340
+ },
341
+ {
342
+ "epoch": 0.4270833333333333,
343
+ "grad_norm": 1.419968843460083,
344
+ "learning_rate": 0.00019911118536803787,
345
+ "loss": 6.9133,
346
+ "num_tokens": 74760616.0,
347
+ "step": 41
348
+ },
349
+ {
350
+ "epoch": 0.4375,
351
+ "grad_norm": 1.3873683214187622,
352
+ "learning_rate": 0.00019894253547463896,
353
+ "loss": 6.8253,
354
+ "num_tokens": 76594149.0,
355
+ "step": 42
356
+ },
357
+ {
358
+ "epoch": 0.4479166666666667,
359
+ "grad_norm": 0.913640022277832,
360
+ "learning_rate": 0.0001987593283785945,
361
+ "loss": 6.6054,
362
+ "num_tokens": 78424329.0,
363
+ "step": 43
364
+ },
365
+ {
366
+ "epoch": 0.4583333333333333,
367
+ "grad_norm": 1.8171018362045288,
368
+ "learning_rate": 0.00019856159103477086,
369
+ "loss": 4.7958,
370
+ "num_tokens": 80185993.0,
371
+ "step": 44
372
+ },
373
+ {
374
+ "epoch": 0.46875,
375
+ "grad_norm": 1.4733974933624268,
376
+ "learning_rate": 0.0001983493525358385,
377
+ "loss": 6.7481,
378
+ "num_tokens": 82020985.0,
379
+ "step": 45
380
+ },
381
+ {
382
+ "epoch": 0.4791666666666667,
383
+ "grad_norm": 1.0637065172195435,
384
+ "learning_rate": 0.0001981226441079918,
385
+ "loss": 6.7655,
386
+ "num_tokens": 83855703.0,
387
+ "step": 46
388
+ },
389
+ {
390
+ "epoch": 0.4895833333333333,
391
+ "grad_norm": 1.1668665409088135,
392
+ "learning_rate": 0.0001978814991063546,
393
+ "loss": 6.8615,
394
+ "num_tokens": 85690104.0,
395
+ "step": 47
396
+ },
397
+ {
398
+ "epoch": 0.5,
399
+ "grad_norm": 1.1763768196105957,
400
+ "learning_rate": 0.00019762595301007281,
401
+ "loss": 6.8688,
402
+ "num_tokens": 87523856.0,
403
+ "step": 48
404
+ },
405
+ {
406
+ "epoch": 0.5104166666666666,
407
+ "grad_norm": 1.0596013069152832,
408
+ "learning_rate": 0.00019735604341709448,
409
+ "loss": 6.5309,
410
+ "num_tokens": 89355335.0,
411
+ "step": 49
412
+ },
413
+ {
414
+ "epoch": 0.5208333333333334,
415
+ "grad_norm": 1.4968317747116089,
416
+ "learning_rate": 0.00019707181003863808,
417
+ "loss": 4.2569,
418
+ "num_tokens": 91098058.0,
419
+ "step": 50
420
+ },
421
+ {
422
+ "epoch": 0.53125,
423
+ "grad_norm": 1.4468708038330078,
424
+ "learning_rate": 0.0001967732946933499,
425
+ "loss": 6.4713,
426
+ "num_tokens": 92933066.0,
427
+ "step": 51
428
+ },
429
+ {
430
+ "epoch": 0.5416666666666666,
431
+ "grad_norm": 1.1204187870025635,
432
+ "learning_rate": 0.0001964605413011512,
433
+ "loss": 6.8482,
434
+ "num_tokens": 94767926.0,
435
+ "step": 52
436
+ },
437
+ {
438
+ "epoch": 0.5520833333333334,
439
+ "grad_norm": 1.1414028406143188,
440
+ "learning_rate": 0.00019613359587677658,
441
+ "loss": 6.9067,
442
+ "num_tokens": 96602477.0,
443
+ "step": 53
444
+ },
445
+ {
446
+ "epoch": 0.5625,
447
+ "grad_norm": 1.1222317218780518,
448
+ "learning_rate": 0.0001957925065230038,
449
+ "loss": 6.8611,
450
+ "num_tokens": 98436510.0,
451
+ "step": 54
452
+ },
453
+ {
454
+ "epoch": 0.5729166666666666,
455
+ "grad_norm": 1.2287341356277466,
456
+ "learning_rate": 0.00019543732342357662,
457
+ "loss": 6.6331,
458
+ "num_tokens": 100269204.0,
459
+ "step": 55
460
+ },
461
+ {
462
+ "epoch": 0.5833333333333334,
463
+ "grad_norm": 1.4391974210739136,
464
+ "learning_rate": 0.00019506809883582124,
465
+ "loss": 4.9841,
466
+ "num_tokens": 102087564.0,
467
+ "step": 56
468
+ },
469
+ {
470
+ "epoch": 0.59375,
471
+ "grad_norm": 0.9550106525421143,
472
+ "learning_rate": 0.0001946848870829579,
473
+ "loss": 5.7976,
474
+ "num_tokens": 103853432.0,
475
+ "step": 57
476
+ },
477
+ {
478
+ "epoch": 0.6041666666666666,
479
+ "grad_norm": 0.9806034564971924,
480
+ "learning_rate": 0.00019428774454610843,
481
+ "loss": 6.7797,
482
+ "num_tokens": 105688316.0,
483
+ "step": 58
484
+ },
485
+ {
486
+ "epoch": 0.6145833333333334,
487
+ "grad_norm": 1.075658917427063,
488
+ "learning_rate": 0.00019387672965600087,
489
+ "loss": 6.8395,
490
+ "num_tokens": 107522938.0,
491
+ "step": 59
492
+ },
493
+ {
494
+ "epoch": 0.625,
495
+ "grad_norm": 1.0181782245635986,
496
+ "learning_rate": 0.00019345190288437293,
497
+ "loss": 6.775,
498
+ "num_tokens": 109357089.0,
499
+ "step": 60
500
+ },
501
+ {
502
+ "epoch": 0.6354166666666666,
503
+ "grad_norm": 1.1025474071502686,
504
+ "learning_rate": 0.00019301332673507456,
505
+ "loss": 6.5375,
506
+ "num_tokens": 111190261.0,
507
+ "step": 61
508
+ },
509
+ {
510
+ "epoch": 0.6458333333333334,
511
+ "grad_norm": 1.0409873723983765,
512
+ "learning_rate": 0.00019256106573487238,
513
+ "loss": 5.8817,
514
+ "num_tokens": 113017434.0,
515
+ "step": 62
516
+ },
517
+ {
518
+ "epoch": 0.65625,
519
+ "grad_norm": 1.040127158164978,
520
+ "learning_rate": 0.00019209518642395547,
521
+ "loss": 4.9992,
522
+ "num_tokens": 114773984.0,
523
+ "step": 63
524
+ },
525
+ {
526
+ "epoch": 0.6666666666666666,
527
+ "grad_norm": 1.0943304300308228,
528
+ "learning_rate": 0.00019161575734614585,
529
+ "loss": 6.3306,
530
+ "num_tokens": 116608963.0,
531
+ "step": 64
532
+ },
533
+ {
534
+ "epoch": 0.6770833333333334,
535
+ "grad_norm": 0.9448878765106201,
536
+ "learning_rate": 0.0001911228490388136,
537
+ "loss": 6.7798,
538
+ "num_tokens": 118443674.0,
539
+ "step": 65
540
+ },
541
+ {
542
+ "epoch": 0.6875,
543
+ "grad_norm": 1.0497307777404785,
544
+ "learning_rate": 0.00019061653402249878,
545
+ "loss": 6.7631,
546
+ "num_tokens": 120278001.0,
547
+ "step": 66
548
+ },
549
+ {
550
+ "epoch": 0.6979166666666666,
551
+ "grad_norm": 0.9516660571098328,
552
+ "learning_rate": 0.0001900968867902419,
553
+ "loss": 6.7123,
554
+ "num_tokens": 122111518.0,
555
+ "step": 67
556
+ },
557
+ {
558
+ "epoch": 0.7083333333333334,
559
+ "grad_norm": 0.8681999444961548,
560
+ "learning_rate": 0.00018956398379662366,
561
+ "loss": 6.2591,
562
+ "num_tokens": 123941919.0,
563
+ "step": 68
564
+ },
565
+ {
566
+ "epoch": 0.71875,
567
+ "grad_norm": 2.1472890377044678,
568
+ "learning_rate": 0.00018901790344651645,
569
+ "loss": 4.4264,
570
+ "num_tokens": 125698383.0,
571
+ "step": 69
572
+ },
573
+ {
574
+ "epoch": 0.7291666666666666,
575
+ "grad_norm": 1.3623411655426025,
576
+ "learning_rate": 0.00018845872608354877,
577
+ "loss": 6.4687,
578
+ "num_tokens": 127533391.0,
579
+ "step": 70
580
+ },
581
+ {
582
+ "epoch": 0.7395833333333334,
583
+ "grad_norm": 1.0571578741073608,
584
+ "learning_rate": 0.0001878865339782846,
585
+ "loss": 6.6055,
586
+ "num_tokens": 129368145.0,
587
+ "step": 71
588
+ },
589
+ {
590
+ "epoch": 0.75,
591
+ "grad_norm": 1.1096223592758179,
592
+ "learning_rate": 0.00018730141131611882,
593
+ "loss": 6.9156,
594
+ "num_tokens": 131202603.0,
595
+ "step": 72
596
+ },
597
+ {
598
+ "epoch": 0.7604166666666666,
599
+ "grad_norm": 1.0648548603057861,
600
+ "learning_rate": 0.0001867034441848915,
601
+ "loss": 6.7572,
602
+ "num_tokens": 133036394.0,
603
+ "step": 73
604
+ },
605
+ {
606
+ "epoch": 0.7708333333333334,
607
+ "grad_norm": 0.9367074370384216,
608
+ "learning_rate": 0.00018609272056222188,
609
+ "loss": 6.5532,
610
+ "num_tokens": 134868491.0,
611
+ "step": 74
612
+ },
613
+ {
614
+ "epoch": 0.78125,
615
+ "grad_norm": 1.4335384368896484,
616
+ "learning_rate": 0.00018546933030256417,
617
+ "loss": 4.2937,
618
+ "num_tokens": 136608131.0,
619
+ "step": 75
620
+ },
621
+ {
622
+ "epoch": 0.7916666666666666,
623
+ "grad_norm": 4.660006046295166,
624
+ "learning_rate": 0.00018483336512398784,
625
+ "loss": 6.397,
626
+ "num_tokens": 138443139.0,
627
+ "step": 76
628
+ },
629
+ {
630
+ "epoch": 0.8020833333333334,
631
+ "grad_norm": 1.2509715557098389,
632
+ "learning_rate": 0.00018418491859468312,
633
+ "loss": 6.8787,
634
+ "num_tokens": 140278014.0,
635
+ "step": 77
636
+ },
637
+ {
638
+ "epoch": 0.8125,
639
+ "grad_norm": 0.9726094007492065,
640
+ "learning_rate": 0.00018352408611919453,
641
+ "loss": 6.8013,
642
+ "num_tokens": 142112594.0,
643
+ "step": 78
644
+ },
645
+ {
646
+ "epoch": 0.8229166666666666,
647
+ "grad_norm": 1.0140933990478516,
648
+ "learning_rate": 0.00018285096492438424,
649
+ "loss": 6.7311,
650
+ "num_tokens": 143946705.0,
651
+ "step": 79
652
+ },
653
+ {
654
+ "epoch": 0.8333333333333334,
655
+ "grad_norm": 1.0336406230926514,
656
+ "learning_rate": 0.0001821656540451273,
657
+ "loss": 6.6231,
658
+ "num_tokens": 145779640.0,
659
+ "step": 80
660
+ },
661
+ {
662
+ "epoch": 0.84375,
663
+ "grad_norm": 1.1661409139633179,
664
+ "learning_rate": 0.0001814682543097409,
665
+ "loss": 5.2183,
666
+ "num_tokens": 147600011.0,
667
+ "step": 81
668
+ },
669
+ {
670
+ "epoch": 0.8541666666666666,
671
+ "grad_norm": 0.9476063251495361,
672
+ "learning_rate": 0.0001807588683251495,
673
+ "loss": 5.6845,
674
+ "num_tokens": 149377100.0,
675
+ "step": 82
676
+ },
677
+ {
678
+ "epoch": 0.8645833333333334,
679
+ "grad_norm": 0.9452285170555115,
680
+ "learning_rate": 0.00018003760046178882,
681
+ "loss": 6.5403,
682
+ "num_tokens": 151211990.0,
683
+ "step": 83
684
+ },
685
+ {
686
+ "epoch": 0.875,
687
+ "grad_norm": 0.958979606628418,
688
+ "learning_rate": 0.00017930455683824978,
689
+ "loss": 6.6053,
690
+ "num_tokens": 153046584.0,
691
+ "step": 84
692
+ },
693
+ {
694
+ "epoch": 0.8854166666666666,
695
+ "grad_norm": 1.163456678390503,
696
+ "learning_rate": 0.00017855984530566564,
697
+ "loss": 6.6077,
698
+ "num_tokens": 154880688.0,
699
+ "step": 85
700
+ },
701
+ {
702
+ "epoch": 0.8958333333333334,
703
+ "grad_norm": 1.1934983730316162,
704
+ "learning_rate": 0.00017780357543184397,
705
+ "loss": 6.5929,
706
+ "num_tokens": 156713762.0,
707
+ "step": 86
708
+ },
709
+ {
710
+ "epoch": 0.90625,
711
+ "grad_norm": 8.590930938720703,
712
+ "learning_rate": 0.00017703585848514634,
713
+ "loss": 5.8754,
714
+ "num_tokens": 158541215.0,
715
+ "step": 87
716
+ },
717
+ {
718
+ "epoch": 0.9166666666666666,
719
+ "grad_norm": 13.481514930725098,
720
+ "learning_rate": 0.00017625680741811746,
721
+ "loss": 4.9299,
722
+ "num_tokens": 160317578.0,
723
+ "step": 88
724
+ },
725
+ {
726
+ "epoch": 0.9270833333333334,
727
+ "grad_norm": 3.5045320987701416,
728
+ "learning_rate": 0.00017546653685086695,
729
+ "loss": 6.3777,
730
+ "num_tokens": 162152538.0,
731
+ "step": 89
732
+ },
733
+ {
734
+ "epoch": 0.9375,
735
+ "grad_norm": 2.1936583518981934,
736
+ "learning_rate": 0.00017466516305420524,
737
+ "loss": 6.7691,
738
+ "num_tokens": 163987214.0,
739
+ "step": 90
740
+ },
741
+ {
742
+ "epoch": 0.9479166666666666,
743
+ "grad_norm": 1.0100579261779785,
744
+ "learning_rate": 0.00017385280393253716,
745
+ "loss": 6.6249,
746
+ "num_tokens": 165821456.0,
747
+ "step": 91
748
+ },
749
+ {
750
+ "epoch": 0.9583333333333334,
751
+ "grad_norm": 1.6229281425476074,
752
+ "learning_rate": 0.00017302957900651474,
753
+ "loss": 6.4187,
754
+ "num_tokens": 167654831.0,
755
+ "step": 92
756
+ },
757
+ {
758
+ "epoch": 0.96875,
759
+ "grad_norm": 1.4464794397354126,
760
+ "learning_rate": 0.00017219560939545246,
761
+ "loss": 6.1919,
762
+ "num_tokens": 169484982.0,
763
+ "step": 93
764
+ },
765
+ {
766
+ "epoch": 0.9791666666666666,
767
+ "grad_norm": 1.393432855606079,
768
+ "learning_rate": 0.00017135101779950724,
769
+ "loss": 4.3906,
770
+ "num_tokens": 171229135.0,
771
+ "step": 94
772
+ },
773
+ {
774
+ "epoch": 0.9895833333333334,
775
+ "grad_norm": 1.427167534828186,
776
+ "learning_rate": 0.00017049592848162584,
777
+ "loss": 6.5857,
778
+ "num_tokens": 173063228.0,
779
+ "step": 95
780
+ },
781
+ {
782
+ "epoch": 1.0,
783
+ "grad_norm": 0.7913920879364014,
784
+ "learning_rate": 0.00016963046724926222,
785
+ "loss": 5.8988,
786
+ "num_tokens": 174885743.0,
787
+ "step": 96
788
+ },
789
+ {
790
+ "epoch": 1.0,
791
+ "eval_loss": 0.40726137161254883,
792
+ "eval_num_tokens": 174885743.0,
793
+ "eval_runtime": 29.6224,
794
+ "eval_samples_per_second": 74.707,
795
+ "eval_steps_per_second": 2.363,
796
+ "step": 96
797
+ },
798
+ {
799
+ "epoch": 1.0104166666666667,
800
+ "grad_norm": 1.2719930410385132,
801
+ "learning_rate": 0.00016875476143586788,
802
+ "loss": 5.9922,
803
+ "num_tokens": 176720751.0,
804
+ "step": 97
805
+ },
806
+ {
807
+ "epoch": 1.0208333333333333,
808
+ "grad_norm": 1.0774774551391602,
809
+ "learning_rate": 0.00016786893988215753,
810
+ "loss": 6.0907,
811
+ "num_tokens": 178555589.0,
812
+ "step": 98
813
+ },
814
+ {
815
+ "epoch": 1.03125,
816
+ "grad_norm": 1.2304658889770508,
817
+ "learning_rate": 0.00016697313291715298,
818
+ "loss": 6.1506,
819
+ "num_tokens": 180390095.0,
820
+ "step": 99
821
+ },
822
+ {
823
+ "epoch": 1.0416666666666667,
824
+ "grad_norm": 1.3053410053253174,
825
+ "learning_rate": 0.00016606747233900815,
826
+ "loss": 5.9837,
827
+ "num_tokens": 182224036.0,
828
+ "step": 100
829
+ },
830
+ {
831
+ "epoch": 1.0520833333333333,
832
+ "grad_norm": 0.9655668139457703,
833
+ "learning_rate": 0.00016515209139561794,
834
+ "loss": 5.8686,
835
+ "num_tokens": 184056473.0,
836
+ "step": 101
837
+ },
838
+ {
839
+ "epoch": 1.0625,
840
+ "grad_norm": 1.163251280784607,
841
+ "learning_rate": 0.0001642271247650136,
842
+ "loss": 4.2894,
843
+ "num_tokens": 185872860.0,
844
+ "step": 102
845
+ },
846
+ {
847
+ "epoch": 1.0729166666666667,
848
+ "grad_norm": 0.9375080466270447,
849
+ "learning_rate": 0.00016329270853554807,
850
+ "loss": 5.1262,
851
+ "num_tokens": 187644701.0,
852
+ "step": 103
853
+ },
854
+ {
855
+ "epoch": 1.0833333333333333,
856
+ "grad_norm": 0.836040198802948,
857
+ "learning_rate": 0.00016234898018587337,
858
+ "loss": 5.9917,
859
+ "num_tokens": 189479639.0,
860
+ "step": 104
861
+ },
862
+ {
863
+ "epoch": 1.09375,
864
+ "grad_norm": 1.0972402095794678,
865
+ "learning_rate": 0.00016139607856471377,
866
+ "loss": 6.1988,
867
+ "num_tokens": 191314308.0,
868
+ "step": 105
869
+ },
870
+ {
871
+ "epoch": 1.1041666666666667,
872
+ "grad_norm": 0.8589965105056763,
873
+ "learning_rate": 0.0001604341438704373,
874
+ "loss": 6.2019,
875
+ "num_tokens": 193148505.0,
876
+ "step": 106
877
+ },
878
+ {
879
+ "epoch": 1.1145833333333333,
880
+ "grad_norm": 0.8513528108596802,
881
+ "learning_rate": 0.00015946331763042867,
882
+ "loss": 5.855,
883
+ "num_tokens": 194981706.0,
884
+ "step": 107
885
+ },
886
+ {
887
+ "epoch": 1.125,
888
+ "grad_norm": 1.2804700136184692,
889
+ "learning_rate": 0.00015848374268026647,
890
+ "loss": 5.0832,
891
+ "num_tokens": 196807954.0,
892
+ "step": 108
893
+ },
894
+ {
895
+ "epoch": 1.1354166666666667,
896
+ "grad_norm": 0.9044701457023621,
897
+ "learning_rate": 0.0001574955631427083,
898
+ "loss": 4.5894,
899
+ "num_tokens": 198547334.0,
900
+ "step": 109
901
+ },
902
+ {
903
+ "epoch": 1.1458333333333333,
904
+ "grad_norm": 0.9213070273399353,
905
+ "learning_rate": 0.00015649892440648623,
906
+ "loss": 5.8609,
907
+ "num_tokens": 200382304.0,
908
+ "step": 110
909
+ },
910
+ {
911
+ "epoch": 1.15625,
912
+ "grad_norm": 1.2462490797042847,
913
+ "learning_rate": 0.00015549397310491605,
914
+ "loss": 6.0755,
915
+ "num_tokens": 202216995.0,
916
+ "step": 111
917
+ },
918
+ {
919
+ "epoch": 1.1666666666666667,
920
+ "grad_norm": 0.9984328746795654,
921
+ "learning_rate": 0.00015448085709432338,
922
+ "loss": 6.1775,
923
+ "num_tokens": 204051331.0,
924
+ "step": 112
925
+ },
926
+ {
927
+ "epoch": 1.1770833333333333,
928
+ "grad_norm": 0.8022240400314331,
929
+ "learning_rate": 0.00015345972543229,
930
+ "loss": 6.0557,
931
+ "num_tokens": 205884933.0,
932
+ "step": 113
933
+ },
934
+ {
935
+ "epoch": 1.1875,
936
+ "grad_norm": 0.8404216170310974,
937
+ "learning_rate": 0.00015243072835572318,
938
+ "loss": 5.6417,
939
+ "num_tokens": 207715221.0,
940
+ "step": 114
941
+ },
942
+ {
943
+ "epoch": 1.1979166666666667,
944
+ "grad_norm": 1.0233253240585327,
945
+ "learning_rate": 0.0001513940172587518,
946
+ "loss": 3.9534,
947
+ "num_tokens": 209463400.0,
948
+ "step": 115
949
+ },
950
+ {
951
+ "epoch": 1.2083333333333333,
952
+ "grad_norm": 0.8012278079986572,
953
+ "learning_rate": 0.000150349744670452,
954
+ "loss": 5.8775,
955
+ "num_tokens": 211298403.0,
956
+ "step": 116
957
+ },
958
+ {
959
+ "epoch": 1.21875,
960
+ "grad_norm": 0.9274885058403015,
961
+ "learning_rate": 0.00014929806423240582,
962
+ "loss": 6.1698,
963
+ "num_tokens": 213133134.0,
964
+ "step": 117
965
+ },
966
+ {
967
+ "epoch": 1.2291666666666667,
968
+ "grad_norm": 0.8778573870658875,
969
+ "learning_rate": 0.00014823913067609637,
970
+ "loss": 6.0613,
971
+ "num_tokens": 214967541.0,
972
+ "step": 118
973
+ },
974
+ {
975
+ "epoch": 1.2395833333333333,
976
+ "grad_norm": 0.9037396907806396,
977
+ "learning_rate": 0.00014717309980014244,
978
+ "loss": 6.0915,
979
+ "num_tokens": 216801312.0,
980
+ "step": 119
981
+ },
982
+ {
983
+ "epoch": 1.25,
984
+ "grad_norm": 0.9712461233139038,
985
+ "learning_rate": 0.00014610012844737622,
986
+ "loss": 5.7472,
987
+ "num_tokens": 218633029.0,
988
+ "step": 120
989
+ },
990
+ {
991
+ "epoch": 1.2604166666666667,
992
+ "grad_norm": 1.3214646577835083,
993
+ "learning_rate": 0.00014502037448176734,
994
+ "loss": 3.4601,
995
+ "num_tokens": 220392276.0,
996
+ "step": 121
997
+ },
998
+ {
999
+ "epoch": 1.2708333333333333,
1000
+ "grad_norm": 0.9007311463356018,
1001
+ "learning_rate": 0.00014393399676519667,
1002
+ "loss": 5.8749,
1003
+ "num_tokens": 222227284.0,
1004
+ "step": 122
1005
+ },
1006
+ {
1007
+ "epoch": 1.28125,
1008
+ "grad_norm": 0.9098818898200989,
1009
+ "learning_rate": 0.00014284115513408336,
1010
+ "loss": 5.9967,
1011
+ "num_tokens": 224062147.0,
1012
+ "step": 123
1013
+ },
1014
+ {
1015
+ "epoch": 1.2916666666666667,
1016
+ "grad_norm": 0.8330245018005371,
1017
+ "learning_rate": 0.00014174201037586842,
1018
+ "loss": 5.9866,
1019
+ "num_tokens": 225896682.0,
1020
+ "step": 124
1021
+ },
1022
+ {
1023
+ "epoch": 1.3020833333333333,
1024
+ "grad_norm": 0.8968133330345154,
1025
+ "learning_rate": 0.0001406367242053583,
1026
+ "loss": 5.9487,
1027
+ "num_tokens": 227730675.0,
1028
+ "step": 125
1029
+ },
1030
+ {
1031
+ "epoch": 1.3125,
1032
+ "grad_norm": 0.8355301022529602,
1033
+ "learning_rate": 0.00013952545924093238,
1034
+ "loss": 5.8684,
1035
+ "num_tokens": 229563354.0,
1036
+ "step": 126
1037
+ },
1038
+ {
1039
+ "epoch": 1.3229166666666667,
1040
+ "grad_norm": 0.9524968862533569,
1041
+ "learning_rate": 0.00013840837898061712,
1042
+ "loss": 4.6631,
1043
+ "num_tokens": 231382349.0,
1044
+ "step": 127
1045
+ },
1046
+ {
1047
+ "epoch": 1.3333333333333333,
1048
+ "grad_norm": 0.7690907716751099,
1049
+ "learning_rate": 0.00013728564777803088,
1050
+ "loss": 5.1172,
1051
+ "num_tokens": 233157485.0,
1052
+ "step": 128
1053
+ },
1054
+ {
1055
+ "epoch": 1.34375,
1056
+ "grad_norm": 0.8060216903686523,
1057
+ "learning_rate": 0.00013615743081820308,
1058
+ "loss": 5.999,
1059
+ "num_tokens": 234992398.0,
1060
+ "step": 129
1061
+ },
1062
+ {
1063
+ "epoch": 1.3541666666666667,
1064
+ "grad_norm": 0.8314852118492126,
1065
+ "learning_rate": 0.00013502389409327087,
1066
+ "loss": 6.0317,
1067
+ "num_tokens": 236827040.0,
1068
+ "step": 130
1069
+ },
1070
+ {
1071
+ "epoch": 1.3645833333333333,
1072
+ "grad_norm": 0.8006500601768494,
1073
+ "learning_rate": 0.0001338852043780569,
1074
+ "loss": 5.7848,
1075
+ "num_tokens": 238661202.0,
1076
+ "step": 131
1077
+ },
1078
+ {
1079
+ "epoch": 1.375,
1080
+ "grad_norm": 0.8115113973617554,
1081
+ "learning_rate": 0.00013274152920553226,
1082
+ "loss": 5.9345,
1083
+ "num_tokens": 240494474.0,
1084
+ "step": 132
1085
+ },
1086
+ {
1087
+ "epoch": 1.3854166666666667,
1088
+ "grad_norm": 0.7442668676376343,
1089
+ "learning_rate": 0.0001315930368421676,
1090
+ "loss": 5.234,
1091
+ "num_tokens": 242322367.0,
1092
+ "step": 133
1093
+ },
1094
+ {
1095
+ "epoch": 1.3958333333333333,
1096
+ "grad_norm": 1.0141338109970093,
1097
+ "learning_rate": 0.00013043989626317667,
1098
+ "loss": 4.1387,
1099
+ "num_tokens": 244114841.0,
1100
+ "step": 134
1101
+ },
1102
+ {
1103
+ "epoch": 1.40625,
1104
+ "grad_norm": 0.8511059284210205,
1105
+ "learning_rate": 0.00012928227712765504,
1106
+ "loss": 5.9175,
1107
+ "num_tokens": 245949813.0,
1108
+ "step": 135
1109
+ },
1110
+ {
1111
+ "epoch": 1.4166666666666667,
1112
+ "grad_norm": 0.8228452801704407,
1113
+ "learning_rate": 0.00012812034975361874,
1114
+ "loss": 5.9637,
1115
+ "num_tokens": 247784505.0,
1116
+ "step": 136
1117
+ },
1118
+ {
1119
+ "epoch": 1.4270833333333333,
1120
+ "grad_norm": 0.8691542148590088,
1121
+ "learning_rate": 0.00012695428509294567,
1122
+ "loss": 5.9107,
1123
+ "num_tokens": 249618830.0,
1124
+ "step": 137
1125
+ },
1126
+ {
1127
+ "epoch": 1.4375,
1128
+ "grad_norm": 0.7453424334526062,
1129
+ "learning_rate": 0.0001257842547062238,
1130
+ "loss": 5.7804,
1131
+ "num_tokens": 251452377.0,
1132
+ "step": 138
1133
+ },
1134
+ {
1135
+ "epoch": 1.4479166666666667,
1136
+ "grad_norm": 0.7112407088279724,
1137
+ "learning_rate": 0.00012461043073750988,
1138
+ "loss": 5.5699,
1139
+ "num_tokens": 253283287.0,
1140
+ "step": 139
1141
+ },
1142
+ {
1143
+ "epoch": 1.4583333333333333,
1144
+ "grad_norm": 0.9047596454620361,
1145
+ "learning_rate": 0.00012343298588900225,
1146
+ "loss": 3.9271,
1147
+ "num_tokens": 255026046.0,
1148
+ "step": 140
1149
+ },
1150
+ {
1151
+ "epoch": 1.46875,
1152
+ "grad_norm": 0.7571535110473633,
1153
+ "learning_rate": 0.00012225209339563145,
1154
+ "loss": 5.9484,
1155
+ "num_tokens": 256861054.0,
1156
+ "step": 141
1157
+ },
1158
+ {
1159
+ "epoch": 1.4791666666666667,
1160
+ "grad_norm": 0.8223585486412048,
1161
+ "learning_rate": 0.00012106792699957263,
1162
+ "loss": 5.8375,
1163
+ "num_tokens": 258695847.0,
1164
+ "step": 142
1165
+ },
1166
+ {
1167
+ "epoch": 1.4895833333333333,
1168
+ "grad_norm": 0.8138189315795898,
1169
+ "learning_rate": 0.00011988066092468324,
1170
+ "loss": 6.041,
1171
+ "num_tokens": 260530258.0,
1172
+ "step": 143
1173
+ },
1174
+ {
1175
+ "epoch": 1.5,
1176
+ "grad_norm": 0.8064430356025696,
1177
+ "learning_rate": 0.00011869046985086978,
1178
+ "loss": 6.0705,
1179
+ "num_tokens": 262364015.0,
1180
+ "step": 144
1181
+ },
1182
+ {
1183
+ "epoch": 1.5104166666666665,
1184
+ "grad_norm": 0.7332646250724792,
1185
+ "learning_rate": 0.00011749752888838754,
1186
+ "loss": 5.7084,
1187
+ "num_tokens": 264195805.0,
1188
+ "step": 145
1189
+ },
1190
+ {
1191
+ "epoch": 1.5208333333333335,
1192
+ "grad_norm": 0.9756503701210022,
1193
+ "learning_rate": 0.00011630201355207709,
1194
+ "loss": 3.9937,
1195
+ "num_tokens": 265976881.0,
1196
+ "step": 146
1197
+ },
1198
+ {
1199
+ "epoch": 1.53125,
1200
+ "grad_norm": 0.8575289845466614,
1201
+ "learning_rate": 0.000115104099735541,
1202
+ "loss": 5.6886,
1203
+ "num_tokens": 267811889.0,
1204
+ "step": 147
1205
+ },
1206
+ {
1207
+ "epoch": 1.5416666666666665,
1208
+ "grad_norm": 0.8274205923080444,
1209
+ "learning_rate": 0.00011390396368526517,
1210
+ "loss": 5.9956,
1211
+ "num_tokens": 269646750.0,
1212
+ "step": 148
1213
+ },
1214
+ {
1215
+ "epoch": 1.5520833333333335,
1216
+ "grad_norm": 0.8247790336608887,
1217
+ "learning_rate": 0.00011270178197468789,
1218
+ "loss": 6.0649,
1219
+ "num_tokens": 271481363.0,
1220
+ "step": 149
1221
+ },
1222
+ {
1223
+ "epoch": 1.5625,
1224
+ "grad_norm": 1.015745759010315,
1225
+ "learning_rate": 0.00011149773147822111,
1226
+ "loss": 6.079,
1227
+ "num_tokens": 273315476.0,
1228
+ "step": 150
1229
+ },
1230
+ {
1231
+ "epoch": 1.5729166666666665,
1232
+ "grad_norm": 1.3161146640777588,
1233
+ "learning_rate": 0.00011029198934522725,
1234
+ "loss": 5.8144,
1235
+ "num_tokens": 275148482.0,
1236
+ "step": 151
1237
+ },
1238
+ {
1239
+ "epoch": 1.5833333333333335,
1240
+ "grad_norm": 0.7493459582328796,
1241
+ "learning_rate": 0.00010908473297395551,
1242
+ "loss": 4.7308,
1243
+ "num_tokens": 276969990.0,
1244
+ "step": 152
1245
+ },
1246
+ {
1247
+ "epoch": 1.59375,
1248
+ "grad_norm": 0.7081484794616699,
1249
+ "learning_rate": 0.0001078761399854418,
1250
+ "loss": 4.8451,
1251
+ "num_tokens": 278741308.0,
1252
+ "step": 153
1253
+ },
1254
+ {
1255
+ "epoch": 1.6041666666666665,
1256
+ "grad_norm": 0.8730968236923218,
1257
+ "learning_rate": 0.00010666638819737553,
1258
+ "loss": 5.9697,
1259
+ "num_tokens": 280576202.0,
1260
+ "step": 154
1261
+ },
1262
+ {
1263
+ "epoch": 1.6145833333333335,
1264
+ "grad_norm": 0.8091002106666565,
1265
+ "learning_rate": 0.00010545565559793796,
1266
+ "loss": 6.1964,
1267
+ "num_tokens": 282410853.0,
1268
+ "step": 155
1269
+ },
1270
+ {
1271
+ "epoch": 1.625,
1272
+ "grad_norm": 0.7971783876419067,
1273
+ "learning_rate": 0.00010424412031961484,
1274
+ "loss": 6.0415,
1275
+ "num_tokens": 284245022.0,
1276
+ "step": 156
1277
+ },
1278
+ {
1279
+ "epoch": 1.6354166666666665,
1280
+ "grad_norm": 0.8752973675727844,
1281
+ "learning_rate": 0.0001030319606129885,
1282
+ "loss": 5.8945,
1283
+ "num_tokens": 286078219.0,
1284
+ "step": 157
1285
+ },
1286
+ {
1287
+ "epoch": 1.6458333333333335,
1288
+ "grad_norm": 0.7812337279319763,
1289
+ "learning_rate": 0.00010181935482051197,
1290
+ "loss": 5.2035,
1291
+ "num_tokens": 287905531.0,
1292
+ "step": 158
1293
+ },
1294
+ {
1295
+ "epoch": 1.65625,
1296
+ "grad_norm": 0.8713350296020508,
1297
+ "learning_rate": 0.00010060648135026998,
1298
+ "loss": 4.39,
1299
+ "num_tokens": 289671225.0,
1300
+ "step": 159
1301
+ },
1302
+ {
1303
+ "epoch": 1.6666666666666665,
1304
+ "grad_norm": 0.8351245522499084,
1305
+ "learning_rate": 9.939351864973006e-05,
1306
+ "loss": 5.74,
1307
+ "num_tokens": 291506205.0,
1308
+ "step": 160
1309
+ },
1310
+ {
1311
+ "epoch": 1.6770833333333335,
1312
+ "grad_norm": 0.8304809927940369,
1313
+ "learning_rate": 9.818064517948805e-05,
1314
+ "loss": 5.6296,
1315
+ "num_tokens": 293340903.0,
1316
+ "step": 161
1317
+ },
1318
+ {
1319
+ "epoch": 1.6875,
1320
+ "grad_norm": 0.7580217123031616,
1321
+ "learning_rate": 9.696803938701154e-05,
1322
+ "loss": 5.9524,
1323
+ "num_tokens": 295175185.0,
1324
+ "step": 162
1325
+ },
1326
+ {
1327
+ "epoch": 1.6979166666666665,
1328
+ "grad_norm": 0.9276612997055054,
1329
+ "learning_rate": 9.57558796803852e-05,
1330
+ "loss": 5.9102,
1331
+ "num_tokens": 297008730.0,
1332
+ "step": 163
1333
+ },
1334
+ {
1335
+ "epoch": 1.7083333333333335,
1336
+ "grad_norm": 0.7644199132919312,
1337
+ "learning_rate": 9.454434440206211e-05,
1338
+ "loss": 5.7445,
1339
+ "num_tokens": 298839757.0,
1340
+ "step": 164
1341
+ },
1342
+ {
1343
+ "epoch": 1.71875,
1344
+ "grad_norm": 0.8255704045295715,
1345
+ "learning_rate": 9.33336118026245e-05,
1346
+ "loss": 4.0577,
1347
+ "num_tokens": 300606809.0,
1348
+ "step": 165
1349
+ },
1350
+ {
1351
+ "epoch": 1.7291666666666665,
1352
+ "grad_norm": 0.8408218622207642,
1353
+ "learning_rate": 9.212386001455826e-05,
1354
+ "loss": 5.7455,
1355
+ "num_tokens": 302441808.0,
1356
+ "step": 166
1357
+ },
1358
+ {
1359
+ "epoch": 1.7395833333333335,
1360
+ "grad_norm": 0.791253387928009,
1361
+ "learning_rate": 9.091526702604448e-05,
1362
+ "loss": 6.0161,
1363
+ "num_tokens": 304276550.0,
1364
+ "step": 167
1365
+ },
1366
+ {
1367
+ "epoch": 1.75,
1368
+ "grad_norm": 0.7565672397613525,
1369
+ "learning_rate": 8.970801065477276e-05,
1370
+ "loss": 6.0298,
1371
+ "num_tokens": 306110958.0,
1372
+ "step": 168
1373
+ },
1374
+ {
1375
+ "epoch": 1.7604166666666665,
1376
+ "grad_norm": 0.8409264087677002,
1377
+ "learning_rate": 8.85022685217789e-05,
1378
+ "loss": 5.8963,
1379
+ "num_tokens": 307944693.0,
1380
+ "step": 169
1381
+ },
1382
+ {
1383
+ "epoch": 1.7708333333333335,
1384
+ "grad_norm": 0.7787932753562927,
1385
+ "learning_rate": 8.729821802531212e-05,
1386
+ "loss": 5.7313,
1387
+ "num_tokens": 309776172.0,
1388
+ "step": 170
1389
+ },
1390
+ {
1391
+ "epoch": 1.78125,
1392
+ "grad_norm": 1.0043314695358276,
1393
+ "learning_rate": 8.609603631473487e-05,
1394
+ "loss": 3.5194,
1395
+ "num_tokens": 311489802.0,
1396
+ "step": 171
1397
+ },
1398
+ {
1399
+ "epoch": 1.7916666666666665,
1400
+ "grad_norm": 0.7282080054283142,
1401
+ "learning_rate": 8.489590026445902e-05,
1402
+ "loss": 5.7639,
1403
+ "num_tokens": 313324810.0,
1404
+ "step": 172
1405
+ },
1406
+ {
1407
+ "epoch": 1.8020833333333335,
1408
+ "grad_norm": 0.7764191627502441,
1409
+ "learning_rate": 8.369798644792293e-05,
1410
+ "loss": 5.8578,
1411
+ "num_tokens": 315159645.0,
1412
+ "step": 173
1413
+ },
1414
+ {
1415
+ "epoch": 1.8125,
1416
+ "grad_norm": 0.8042583465576172,
1417
+ "learning_rate": 8.250247111161248e-05,
1418
+ "loss": 5.9218,
1419
+ "num_tokens": 316994149.0,
1420
+ "step": 174
1421
+ },
1422
+ {
1423
+ "epoch": 1.8229166666666665,
1424
+ "grad_norm": 0.7392557263374329,
1425
+ "learning_rate": 8.130953014913025e-05,
1426
+ "loss": 5.7039,
1427
+ "num_tokens": 318828139.0,
1428
+ "step": 175
1429
+ },
1430
+ {
1431
+ "epoch": 1.8333333333333335,
1432
+ "grad_norm": 0.742917001247406,
1433
+ "learning_rate": 8.011933907531678e-05,
1434
+ "loss": 5.6819,
1435
+ "num_tokens": 320660783.0,
1436
+ "step": 176
1437
+ },
1438
+ {
1439
+ "epoch": 1.84375,
1440
+ "grad_norm": 0.8126767873764038,
1441
+ "learning_rate": 7.89320730004274e-05,
1442
+ "loss": 4.2975,
1443
+ "num_tokens": 322478386.0,
1444
+ "step": 177
1445
+ },
1446
+ {
1447
+ "epoch": 1.8541666666666665,
1448
+ "grad_norm": 0.6863731741905212,
1449
+ "learning_rate": 7.774790660436858e-05,
1450
+ "loss": 5.0231,
1451
+ "num_tokens": 324250009.0,
1452
+ "step": 178
1453
+ },
1454
+ {
1455
+ "epoch": 1.8645833333333335,
1456
+ "grad_norm": 0.8107653856277466,
1457
+ "learning_rate": 7.656701411099777e-05,
1458
+ "loss": 5.9952,
1459
+ "num_tokens": 326084914.0,
1460
+ "step": 179
1461
+ },
1462
+ {
1463
+ "epoch": 1.875,
1464
+ "grad_norm": 0.7769672274589539,
1465
+ "learning_rate": 7.538956926249014e-05,
1466
+ "loss": 5.9752,
1467
+ "num_tokens": 327919576.0,
1468
+ "step": 180
1469
+ },
1470
+ {
1471
+ "epoch": 1.8854166666666665,
1472
+ "grad_norm": 0.8014964461326599,
1473
+ "learning_rate": 7.421574529377623e-05,
1474
+ "loss": 6.0391,
1475
+ "num_tokens": 329753817.0,
1476
+ "step": 181
1477
+ },
1478
+ {
1479
+ "epoch": 1.8958333333333335,
1480
+ "grad_norm": 0.7131144404411316,
1481
+ "learning_rate": 7.304571490705433e-05,
1482
+ "loss": 5.7906,
1483
+ "num_tokens": 331587167.0,
1484
+ "step": 182
1485
+ },
1486
+ {
1487
+ "epoch": 1.90625,
1488
+ "grad_norm": 0.6183276176452637,
1489
+ "learning_rate": 7.187965024638127e-05,
1490
+ "loss": 5.2981,
1491
+ "num_tokens": 333416340.0,
1492
+ "step": 183
1493
+ },
1494
+ {
1495
+ "epoch": 1.9166666666666665,
1496
+ "grad_norm": 0.7822322249412537,
1497
+ "learning_rate": 7.071772287234497e-05,
1498
+ "loss": 4.1759,
1499
+ "num_tokens": 335184043.0,
1500
+ "step": 184
1501
+ },
1502
+ {
1503
+ "epoch": 1.9270833333333335,
1504
+ "grad_norm": 0.9038224220275879,
1505
+ "learning_rate": 6.956010373682335e-05,
1506
+ "loss": 5.8676,
1507
+ "num_tokens": 337019011.0,
1508
+ "step": 185
1509
+ },
1510
+ {
1511
+ "epoch": 1.9375,
1512
+ "grad_norm": 0.7321260571479797,
1513
+ "learning_rate": 6.840696315783239e-05,
1514
+ "loss": 5.9956,
1515
+ "num_tokens": 338853731.0,
1516
+ "step": 186
1517
+ },
1518
+ {
1519
+ "epoch": 1.9479166666666665,
1520
+ "grad_norm": 0.6627479791641235,
1521
+ "learning_rate": 6.725847079446778e-05,
1522
+ "loss": 5.9686,
1523
+ "num_tokens": 340688113.0,
1524
+ "step": 187
1525
+ },
1526
+ {
1527
+ "epoch": 1.9583333333333335,
1528
+ "grad_norm": 0.8157824277877808,
1529
+ "learning_rate": 6.611479562194314e-05,
1530
+ "loss": 5.8535,
1531
+ "num_tokens": 342521820.0,
1532
+ "step": 188
1533
+ },
1534
+ {
1535
+ "epoch": 1.96875,
1536
+ "grad_norm": 0.7909327745437622,
1537
+ "learning_rate": 6.497610590672916e-05,
1538
+ "loss": 5.6085,
1539
+ "num_tokens": 344353269.0,
1540
+ "step": 189
1541
+ },
1542
+ {
1543
+ "epoch": 1.9791666666666665,
1544
+ "grad_norm": 0.9760119318962097,
1545
+ "learning_rate": 6.384256918179691e-05,
1546
+ "loss": 3.755,
1547
+ "num_tokens": 346123614.0,
1548
+ "step": 190
1549
+ },
1550
+ {
1551
+ "epoch": 1.9895833333333335,
1552
+ "grad_norm": 0.6910778880119324,
1553
+ "learning_rate": 6.271435222196916e-05,
1554
+ "loss": 5.5981,
1555
+ "num_tokens": 347957631.0,
1556
+ "step": 191
1557
+ },
1558
+ {
1559
+ "epoch": 2.0,
1560
+ "grad_norm": 0.6510729193687439,
1561
+ "learning_rate": 6.159162101938292e-05,
1562
+ "loss": 4.9271,
1563
+ "num_tokens": 349771486.0,
1564
+ "step": 192
1565
+ },
1566
+ {
1567
+ "epoch": 2.0,
1568
+ "eval_loss": 0.3423305153846741,
1569
+ "eval_num_tokens": 349771486.0,
1570
+ "eval_runtime": 29.6637,
1571
+ "eval_samples_per_second": 74.603,
1572
+ "eval_steps_per_second": 2.36,
1573
+ "step": 192
1574
+ },
1575
+ {
1576
+ "epoch": 2.0104166666666665,
1577
+ "grad_norm": 0.6948514580726624,
1578
+ "learning_rate": 6.047454075906764e-05,
1579
+ "loss": 5.0611,
1580
+ "num_tokens": 351606494.0,
1581
+ "step": 193
1582
+ },
1583
+ {
1584
+ "epoch": 2.0208333333333335,
1585
+ "grad_norm": 0.7176052331924438,
1586
+ "learning_rate": 5.9363275794641736e-05,
1587
+ "loss": 5.2794,
1588
+ "num_tokens": 353441326.0,
1589
+ "step": 194
1590
+ },
1591
+ {
1592
+ "epoch": 2.03125,
1593
+ "grad_norm": 0.7443753480911255,
1594
+ "learning_rate": 5.825798962413164e-05,
1595
+ "loss": 5.4079,
1596
+ "num_tokens": 355275836.0,
1597
+ "step": 195
1598
+ },
1599
+ {
1600
+ "epoch": 2.0416666666666665,
1601
+ "grad_norm": 0.7725483775138855,
1602
+ "learning_rate": 5.7158844865916625e-05,
1603
+ "loss": 5.4036,
1604
+ "num_tokens": 357109789.0,
1605
+ "step": 196
1606
+ },
1607
+ {
1608
+ "epoch": 2.0520833333333335,
1609
+ "grad_norm": 0.7521345615386963,
1610
+ "learning_rate": 5.606600323480332e-05,
1611
+ "loss": 5.2468,
1612
+ "num_tokens": 358942348.0,
1613
+ "step": 197
1614
+ },
1615
+ {
1616
+ "epoch": 2.0625,
1617
+ "grad_norm": 0.7622354626655579,
1618
+ "learning_rate": 5.497962551823266e-05,
1619
+ "loss": 3.8429,
1620
+ "num_tokens": 360757610.0,
1621
+ "step": 198
1622
+ },
1623
+ {
1624
+ "epoch": 2.0729166666666665,
1625
+ "grad_norm": 0.630013644695282,
1626
+ "learning_rate": 5.389987155262379e-05,
1627
+ "loss": 4.3363,
1628
+ "num_tokens": 362511064.0,
1629
+ "step": 199
1630
+ },
1631
+ {
1632
+ "epoch": 2.0833333333333335,
1633
+ "grad_norm": 0.7594055533409119,
1634
+ "learning_rate": 5.282690019985757e-05,
1635
+ "loss": 5.4325,
1636
+ "num_tokens": 364345973.0,
1637
+ "step": 200
1638
+ },
1639
+ {
1640
+ "epoch": 2.09375,
1641
+ "grad_norm": 0.6902291774749756,
1642
+ "learning_rate": 5.176086932390365e-05,
1643
+ "loss": 5.3965,
1644
+ "num_tokens": 366180610.0,
1645
+ "step": 201
1646
+ },
1647
+ {
1648
+ "epoch": 2.1041666666666665,
1649
+ "grad_norm": 0.7697541117668152,
1650
+ "learning_rate": 5.070193576759419e-05,
1651
+ "loss": 5.37,
1652
+ "num_tokens": 368014780.0,
1653
+ "step": 202
1654
+ },
1655
+ {
1656
+ "epoch": 2.1145833333333335,
1657
+ "grad_norm": 0.7714757323265076,
1658
+ "learning_rate": 4.965025532954801e-05,
1659
+ "loss": 5.2093,
1660
+ "num_tokens": 369847958.0,
1661
+ "step": 203
1662
+ },
1663
+ {
1664
+ "epoch": 2.125,
1665
+ "grad_norm": 0.6553754210472107,
1666
+ "learning_rate": 4.8605982741248215e-05,
1667
+ "loss": 4.6465,
1668
+ "num_tokens": 371674362.0,
1669
+ "step": 204
1670
+ },
1671
+ {
1672
+ "epoch": 2.1354166666666665,
1673
+ "grad_norm": 0.7760845422744751,
1674
+ "learning_rate": 4.756927164427685e-05,
1675
+ "loss": 3.8276,
1676
+ "num_tokens": 373456236.0,
1677
+ "step": 205
1678
+ },
1679
+ {
1680
+ "epoch": 2.1458333333333335,
1681
+ "grad_norm": 0.8509770035743713,
1682
+ "learning_rate": 4.654027456771004e-05,
1683
+ "loss": 5.3333,
1684
+ "num_tokens": 375291204.0,
1685
+ "step": 206
1686
+ },
1687
+ {
1688
+ "epoch": 2.15625,
1689
+ "grad_norm": 0.7249243259429932,
1690
+ "learning_rate": 4.551914290567665e-05,
1691
+ "loss": 5.328,
1692
+ "num_tokens": 377125884.0,
1693
+ "step": 207
1694
+ },
1695
+ {
1696
+ "epoch": 2.1666666666666665,
1697
+ "grad_norm": 0.727703869342804,
1698
+ "learning_rate": 4.450602689508398e-05,
1699
+ "loss": 5.4402,
1700
+ "num_tokens": 378960200.0,
1701
+ "step": 208
1702
+ },
1703
+ {
1704
+ "epoch": 2.1770833333333335,
1705
+ "grad_norm": 0.7168691158294678,
1706
+ "learning_rate": 4.35010755935138e-05,
1707
+ "loss": 5.3316,
1708
+ "num_tokens": 380793712.0,
1709
+ "step": 209
1710
+ },
1711
+ {
1712
+ "epoch": 2.1875,
1713
+ "grad_norm": 0.6583669185638428,
1714
+ "learning_rate": 4.250443685729169e-05,
1715
+ "loss": 5.0108,
1716
+ "num_tokens": 382624695.0,
1717
+ "step": 210
1718
+ },
1719
+ {
1720
+ "epoch": 2.1979166666666665,
1721
+ "grad_norm": 0.9036791324615479,
1722
+ "learning_rate": 4.151625731973354e-05,
1723
+ "loss": 3.5982,
1724
+ "num_tokens": 384387840.0,
1725
+ "step": 211
1726
+ },
1727
+ {
1728
+ "epoch": 2.2083333333333335,
1729
+ "grad_norm": 0.7037631869316101,
1730
+ "learning_rate": 4.053668236957134e-05,
1731
+ "loss": 5.0738,
1732
+ "num_tokens": 386222848.0,
1733
+ "step": 212
1734
+ },
1735
+ {
1736
+ "epoch": 2.21875,
1737
+ "grad_norm": 0.7382966876029968,
1738
+ "learning_rate": 3.956585612956268e-05,
1739
+ "loss": 5.4672,
1740
+ "num_tokens": 388057618.0,
1741
+ "step": 213
1742
+ },
1743
+ {
1744
+ "epoch": 2.2291666666666665,
1745
+ "grad_norm": 0.7034947872161865,
1746
+ "learning_rate": 3.8603921435286236e-05,
1747
+ "loss": 5.3153,
1748
+ "num_tokens": 389891998.0,
1749
+ "step": 214
1750
+ },
1751
+ {
1752
+ "epoch": 2.2395833333333335,
1753
+ "grad_norm": 0.700252115726471,
1754
+ "learning_rate": 3.7651019814126654e-05,
1755
+ "loss": 5.1981,
1756
+ "num_tokens": 391725631.0,
1757
+ "step": 215
1758
+ },
1759
+ {
1760
+ "epoch": 2.25,
1761
+ "grad_norm": 0.702680766582489,
1762
+ "learning_rate": 3.670729146445195e-05,
1763
+ "loss": 4.976,
1764
+ "num_tokens": 393557040.0,
1765
+ "step": 216
1766
+ },
1767
+ {
1768
+ "epoch": 2.2604166666666665,
1769
+ "grad_norm": 0.8597504496574402,
1770
+ "learning_rate": 3.577287523498641e-05,
1771
+ "loss": 3.1902,
1772
+ "num_tokens": 395290416.0,
1773
+ "step": 217
1774
+ },
1775
+ {
1776
+ "epoch": 2.2708333333333335,
1777
+ "grad_norm": 0.6755448579788208,
1778
+ "learning_rate": 3.4847908604382095e-05,
1779
+ "loss": 5.2388,
1780
+ "num_tokens": 397125424.0,
1781
+ "step": 218
1782
+ },
1783
+ {
1784
+ "epoch": 2.28125,
1785
+ "grad_norm": 0.7342623472213745,
1786
+ "learning_rate": 3.393252766099187e-05,
1787
+ "loss": 5.322,
1788
+ "num_tokens": 398960262.0,
1789
+ "step": 219
1790
+ },
1791
+ {
1792
+ "epoch": 2.2916666666666665,
1793
+ "grad_norm": 0.6767341494560242,
1794
+ "learning_rate": 3.3026867082847056e-05,
1795
+ "loss": 5.4798,
1796
+ "num_tokens": 400794825.0,
1797
+ "step": 220
1798
+ },
1799
+ {
1800
+ "epoch": 2.3020833333333335,
1801
+ "grad_norm": 1.052095651626587,
1802
+ "learning_rate": 3.21310601178425e-05,
1803
+ "loss": 5.5205,
1804
+ "num_tokens": 402628868.0,
1805
+ "step": 221
1806
+ },
1807
+ {
1808
+ "epoch": 2.3125,
1809
+ "grad_norm": 0.6284305453300476,
1810
+ "learning_rate": 3.1245238564132163e-05,
1811
+ "loss": 5.2478,
1812
+ "num_tokens": 404461483.0,
1813
+ "step": 222
1814
+ },
1815
+ {
1816
+ "epoch": 2.3229166666666665,
1817
+ "grad_norm": 2.5975844860076904,
1818
+ "learning_rate": 3.036953275073783e-05,
1819
+ "loss": 4.1041,
1820
+ "num_tokens": 406281705.0,
1821
+ "step": 223
1822
+ },
1823
+ {
1824
+ "epoch": 2.3333333333333335,
1825
+ "grad_norm": 0.608096718788147,
1826
+ "learning_rate": 2.950407151837421e-05,
1827
+ "loss": 4.6334,
1828
+ "num_tokens": 408058365.0,
1829
+ "step": 224
1830
+ },
1831
+ {
1832
+ "epoch": 2.34375,
1833
+ "grad_norm": 0.6512030363082886,
1834
+ "learning_rate": 2.864898220049277e-05,
1835
+ "loss": 5.4096,
1836
+ "num_tokens": 409893288.0,
1837
+ "step": 225
1838
+ },
1839
+ {
1840
+ "epoch": 2.3541666666666665,
1841
+ "grad_norm": 0.6984207034111023,
1842
+ "learning_rate": 2.7804390604547557e-05,
1843
+ "loss": 5.5544,
1844
+ "num_tokens": 411727962.0,
1845
+ "step": 226
1846
+ },
1847
+ {
1848
+ "epoch": 2.3645833333333335,
1849
+ "grad_norm": 0.645203173160553,
1850
+ "learning_rate": 2.697042099348528e-05,
1851
+ "loss": 5.5268,
1852
+ "num_tokens": 413562214.0,
1853
+ "step": 227
1854
+ },
1855
+ {
1856
+ "epoch": 2.375,
1857
+ "grad_norm": 0.7451352477073669,
1858
+ "learning_rate": 2.6147196067462852e-05,
1859
+ "loss": 5.1853,
1860
+ "num_tokens": 415395615.0,
1861
+ "step": 228
1862
+ },
1863
+ {
1864
+ "epoch": 2.3854166666666665,
1865
+ "grad_norm": 0.6436541676521301,
1866
+ "learning_rate": 2.533483694579477e-05,
1867
+ "loss": 4.9048,
1868
+ "num_tokens": 417224307.0,
1869
+ "step": 229
1870
+ },
1871
+ {
1872
+ "epoch": 2.3958333333333335,
1873
+ "grad_norm": 0.7218170762062073,
1874
+ "learning_rate": 2.4533463149133073e-05,
1875
+ "loss": 3.8916,
1876
+ "num_tokens": 419005795.0,
1877
+ "step": 230
1878
+ },
1879
+ {
1880
+ "epoch": 2.40625,
1881
+ "grad_norm": 0.6904891729354858,
1882
+ "learning_rate": 2.3743192581882556e-05,
1883
+ "loss": 5.2894,
1884
+ "num_tokens": 420840789.0,
1885
+ "step": 231
1886
+ },
1887
+ {
1888
+ "epoch": 2.4166666666666665,
1889
+ "grad_norm": 0.6729670763015747,
1890
+ "learning_rate": 2.296414151485371e-05,
1891
+ "loss": 5.5056,
1892
+ "num_tokens": 422675503.0,
1893
+ "step": 232
1894
+ },
1895
+ {
1896
+ "epoch": 2.4270833333333335,
1897
+ "grad_norm": 0.6402373909950256,
1898
+ "learning_rate": 2.2196424568156073e-05,
1899
+ "loss": 5.3354,
1900
+ "num_tokens": 424509862.0,
1901
+ "step": 233
1902
+ },
1903
+ {
1904
+ "epoch": 2.4375,
1905
+ "grad_norm": 0.6556631922721863,
1906
+ "learning_rate": 2.1440154694334404e-05,
1907
+ "loss": 5.2873,
1908
+ "num_tokens": 426343538.0,
1909
+ "step": 234
1910
+ },
1911
+ {
1912
+ "epoch": 2.4479166666666665,
1913
+ "grad_norm": 0.6008151173591614,
1914
+ "learning_rate": 2.069544316175025e-05,
1915
+ "loss": 5.0402,
1916
+ "num_tokens": 428174442.0,
1917
+ "step": 235
1918
+ },
1919
+ {
1920
+ "epoch": 2.4583333333333335,
1921
+ "grad_norm": 0.851319432258606,
1922
+ "learning_rate": 1.9962399538211207e-05,
1923
+ "loss": 3.3889,
1924
+ "num_tokens": 429919669.0,
1925
+ "step": 236
1926
+ },
1927
+ {
1928
+ "epoch": 2.46875,
1929
+ "grad_norm": 0.6194161176681519,
1930
+ "learning_rate": 1.9241131674850542e-05,
1931
+ "loss": 5.3071,
1932
+ "num_tokens": 431754677.0,
1933
+ "step": 237
1934
+ },
1935
+ {
1936
+ "epoch": 2.4791666666666665,
1937
+ "grad_norm": 0.738338828086853,
1938
+ "learning_rate": 1.853174569025914e-05,
1939
+ "loss": 5.4458,
1940
+ "num_tokens": 433589432.0,
1941
+ "step": 238
1942
+ },
1943
+ {
1944
+ "epoch": 2.4895833333333335,
1945
+ "grad_norm": 0.6430217623710632,
1946
+ "learning_rate": 1.7834345954872713e-05,
1947
+ "loss": 5.4256,
1948
+ "num_tokens": 435423869.0,
1949
+ "step": 239
1950
+ },
1951
+ {
1952
+ "epoch": 2.5,
1953
+ "grad_norm": 0.6353598237037659,
1954
+ "learning_rate": 1.7149035075615794e-05,
1955
+ "loss": 5.3607,
1956
+ "num_tokens": 437257708.0,
1957
+ "step": 240
1958
+ },
1959
+ {
1960
+ "epoch": 2.5104166666666665,
1961
+ "grad_norm": 0.6141358017921448,
1962
+ "learning_rate": 1.6475913880805514e-05,
1963
+ "loss": 5.1188,
1964
+ "num_tokens": 439089899.0,
1965
+ "step": 241
1966
+ },
1967
+ {
1968
+ "epoch": 2.5208333333333335,
1969
+ "grad_norm": 0.946632444858551,
1970
+ "learning_rate": 1.5815081405316912e-05,
1971
+ "loss": 3.4461,
1972
+ "num_tokens": 440851746.0,
1973
+ "step": 242
1974
+ },
1975
+ {
1976
+ "epoch": 2.53125,
1977
+ "grad_norm": 0.5994837880134583,
1978
+ "learning_rate": 1.5166634876012187e-05,
1979
+ "loss": 5.2468,
1980
+ "num_tokens": 442686754.0,
1981
+ "step": 243
1982
+ },
1983
+ {
1984
+ "epoch": 2.5416666666666665,
1985
+ "grad_norm": 0.6093682646751404,
1986
+ "learning_rate": 1.4530669697435861e-05,
1987
+ "loss": 5.3245,
1988
+ "num_tokens": 444521618.0,
1989
+ "step": 244
1990
+ },
1991
+ {
1992
+ "epoch": 2.5520833333333335,
1993
+ "grad_norm": 0.6194096803665161,
1994
+ "learning_rate": 1.3907279437778153e-05,
1995
+ "loss": 5.3153,
1996
+ "num_tokens": 446356145.0,
1997
+ "step": 245
1998
+ },
1999
+ {
2000
+ "epoch": 2.5625,
2001
+ "grad_norm": 0.7306890487670898,
2002
+ "learning_rate": 1.329655581510847e-05,
2003
+ "loss": 5.3427,
2004
+ "num_tokens": 448190084.0,
2005
+ "step": 246
2006
+ },
2007
+ {
2008
+ "epoch": 2.5729166666666665,
2009
+ "grad_norm": 0.6183792352676392,
2010
+ "learning_rate": 1.2698588683881186e-05,
2011
+ "loss": 5.1223,
2012
+ "num_tokens": 450022704.0,
2013
+ "step": 247
2014
+ },
2015
+ {
2016
+ "epoch": 2.5833333333333335,
2017
+ "grad_norm": 0.7473891973495483,
2018
+ "learning_rate": 1.2113466021715425e-05,
2019
+ "loss": 3.8863,
2020
+ "num_tokens": 451841614.0,
2021
+ "step": 248
2022
+ },
2023
+ {
2024
+ "epoch": 2.59375,
2025
+ "grad_norm": 0.5600215196609497,
2026
+ "learning_rate": 1.1541273916451235e-05,
2027
+ "loss": 4.5054,
2028
+ "num_tokens": 453629048.0,
2029
+ "step": 249
2030
+ },
2031
+ {
2032
+ "epoch": 2.6041666666666665,
2033
+ "grad_norm": 0.5968042612075806,
2034
+ "learning_rate": 1.0982096553483568e-05,
2035
+ "loss": 5.156,
2036
+ "num_tokens": 455463961.0,
2037
+ "step": 250
2038
+ },
2039
+ {
2040
+ "epoch": 2.6145833333333335,
2041
+ "grad_norm": 0.6372103691101074,
2042
+ "learning_rate": 1.0436016203376343e-05,
2043
+ "loss": 5.3602,
2044
+ "num_tokens": 457298596.0,
2045
+ "step": 251
2046
+ },
2047
+ {
2048
+ "epoch": 2.625,
2049
+ "grad_norm": 0.6640581488609314,
2050
+ "learning_rate": 9.903113209758096e-06,
2051
+ "loss": 5.1987,
2052
+ "num_tokens": 459132752.0,
2053
+ "step": 252
2054
+ },
2055
+ {
2056
+ "epoch": 2.6354166666666665,
2057
+ "grad_norm": 0.6306663155555725,
2058
+ "learning_rate": 9.383465977501227e-06,
2059
+ "loss": 5.3803,
2060
+ "num_tokens": 460966021.0,
2061
+ "step": 253
2062
+ },
2063
+ {
2064
+ "epoch": 2.6458333333333335,
2065
+ "grad_norm": 0.5750814080238342,
2066
+ "learning_rate": 8.87715096118642e-06,
2067
+ "loss": 4.7525,
2068
+ "num_tokens": 462794863.0,
2069
+ "step": 254
2070
+ },
2071
+ {
2072
+ "epoch": 2.65625,
2073
+ "grad_norm": 0.7967090606689453,
2074
+ "learning_rate": 8.384242653854146e-06,
2075
+ "loss": 3.8948,
2076
+ "num_tokens": 464568212.0,
2077
+ "step": 255
2078
+ },
2079
+ {
2080
+ "epoch": 2.6666666666666665,
2081
+ "grad_norm": 0.6060699820518494,
2082
+ "learning_rate": 7.904813576044534e-06,
2083
+ "loss": 5.129,
2084
+ "num_tokens": 466403182.0,
2085
+ "step": 256
2086
+ },
2087
+ {
2088
+ "epoch": 2.6770833333333335,
2089
+ "grad_norm": 1.2050302028656006,
2090
+ "learning_rate": 7.4389342651276395e-06,
2091
+ "loss": 5.295,
2092
+ "num_tokens": 468237885.0,
2093
+ "step": 257
2094
+ },
2095
+ {
2096
+ "epoch": 2.6875,
2097
+ "grad_norm": 0.6205068826675415,
2098
+ "learning_rate": 6.986673264925436e-06,
2099
+ "loss": 5.3837,
2100
+ "num_tokens": 470072187.0,
2101
+ "step": 258
2102
+ },
2103
+ {
2104
+ "epoch": 2.6979166666666665,
2105
+ "grad_norm": 0.6179949641227722,
2106
+ "learning_rate": 6.548097115627106e-06,
2107
+ "loss": 5.3384,
2108
+ "num_tokens": 471905720.0,
2109
+ "step": 259
2110
+ },
2111
+ {
2112
+ "epoch": 2.7083333333333335,
2113
+ "grad_norm": 1.1975480318069458,
2114
+ "learning_rate": 6.123270343999132e-06,
2115
+ "loss": 4.995,
2116
+ "num_tokens": 473735960.0,
2117
+ "step": 260
2118
+ },
2119
+ {
2120
+ "epoch": 2.71875,
2121
+ "grad_norm": 0.9503664970397949,
2122
+ "learning_rate": 5.71225545389158e-06,
2123
+ "loss": 3.3257,
2124
+ "num_tokens": 475491069.0,
2125
+ "step": 261
2126
+ },
2127
+ {
2128
+ "epoch": 2.7291666666666665,
2129
+ "grad_norm": 0.5758056044578552,
2130
+ "learning_rate": 5.315112917042098e-06,
2131
+ "loss": 5.086,
2132
+ "num_tokens": 477326077.0,
2133
+ "step": 262
2134
+ },
2135
+ {
2136
+ "epoch": 2.7395833333333335,
2137
+ "grad_norm": 0.6178621649742126,
2138
+ "learning_rate": 4.931901164178765e-06,
2139
+ "loss": 5.4641,
2140
+ "num_tokens": 479160897.0,
2141
+ "step": 263
2142
+ },
2143
+ {
2144
+ "epoch": 2.75,
2145
+ "grad_norm": 0.6436989903450012,
2146
+ "learning_rate": 4.562676576423397e-06,
2147
+ "loss": 5.4971,
2148
+ "num_tokens": 480995368.0,
2149
+ "step": 264
2150
+ },
2151
+ {
2152
+ "epoch": 2.7604166666666665,
2153
+ "grad_norm": 0.626816987991333,
2154
+ "learning_rate": 4.207493476996205e-06,
2155
+ "loss": 5.3907,
2156
+ "num_tokens": 482829284.0,
2157
+ "step": 265
2158
+ },
2159
+ {
2160
+ "epoch": 2.7708333333333335,
2161
+ "grad_norm": 0.6234866976737976,
2162
+ "learning_rate": 3.866404123223444e-06,
2163
+ "loss": 5.1555,
2164
+ "num_tokens": 484661533.0,
2165
+ "step": 266
2166
+ },
2167
+ {
2168
+ "epoch": 2.78125,
2169
+ "grad_norm": 0.7500293254852295,
2170
+ "learning_rate": 3.53945869884883e-06,
2171
+ "loss": 3.6557,
2172
+ "num_tokens": 486428903.0,
2173
+ "step": 267
2174
+ },
2175
+ {
2176
+ "epoch": 2.7916666666666665,
2177
+ "grad_norm": 0.6020712852478027,
2178
+ "learning_rate": 3.226705306650113e-06,
2179
+ "loss": 5.2937,
2180
+ "num_tokens": 488263911.0,
2181
+ "step": 268
2182
+ },
2183
+ {
2184
+ "epoch": 2.8020833333333335,
2185
+ "grad_norm": 0.6582825183868408,
2186
+ "learning_rate": 2.9281899613619047e-06,
2187
+ "loss": 5.3827,
2188
+ "num_tokens": 490098734.0,
2189
+ "step": 269
2190
+ },
2191
+ {
2192
+ "epoch": 2.8125,
2193
+ "grad_norm": 0.6350494623184204,
2194
+ "learning_rate": 2.6439565829055268e-06,
2195
+ "loss": 5.4643,
2196
+ "num_tokens": 491933221.0,
2197
+ "step": 270
2198
+ },
2199
+ {
2200
+ "epoch": 2.8229166666666665,
2201
+ "grad_norm": 0.6131789684295654,
2202
+ "learning_rate": 2.3740469899272145e-06,
2203
+ "loss": 5.309,
2204
+ "num_tokens": 493767156.0,
2205
+ "step": 271
2206
+ },
2207
+ {
2208
+ "epoch": 2.8333333333333335,
2209
+ "grad_norm": 0.6128297448158264,
2210
+ "learning_rate": 2.1185008936454254e-06,
2211
+ "loss": 5.0592,
2212
+ "num_tokens": 495599700.0,
2213
+ "step": 272
2214
+ },
2215
+ {
2216
+ "epoch": 2.84375,
2217
+ "grad_norm": 0.7139255404472351,
2218
+ "learning_rate": 1.8773558920082034e-06,
2219
+ "loss": 3.9382,
2220
+ "num_tokens": 497418917.0,
2221
+ "step": 273
2222
+ },
2223
+ {
2224
+ "epoch": 2.8541666666666665,
2225
+ "grad_norm": 0.5505620241165161,
2226
+ "learning_rate": 1.6506474641614923e-06,
2227
+ "loss": 4.6059,
2228
+ "num_tokens": 499174914.0,
2229
+ "step": 274
2230
+ },
2231
+ {
2232
+ "epoch": 2.8645833333333335,
2233
+ "grad_norm": 0.6600484848022461,
2234
+ "learning_rate": 1.4384089652291543e-06,
2235
+ "loss": 5.108,
2236
+ "num_tokens": 501009815.0,
2237
+ "step": 275
2238
+ },
2239
+ {
2240
+ "epoch": 2.875,
2241
+ "grad_norm": 0.6675175428390503,
2242
+ "learning_rate": 1.240671621405498e-06,
2243
+ "loss": 5.4172,
2244
+ "num_tokens": 502844441.0,
2245
+ "step": 276
2246
+ },
2247
+ {
2248
+ "epoch": 2.8854166666666665,
2249
+ "grad_norm": 0.6115691661834717,
2250
+ "learning_rate": 1.0574645253610404e-06,
2251
+ "loss": 5.3482,
2252
+ "num_tokens": 504678606.0,
2253
+ "step": 277
2254
+ },
2255
+ {
2256
+ "epoch": 2.8958333333333335,
2257
+ "grad_norm": 0.5985777974128723,
2258
+ "learning_rate": 8.888146319621537e-07,
2259
+ "loss": 5.2838,
2260
+ "num_tokens": 506511804.0,
2261
+ "step": 278
2262
+ },
2263
+ {
2264
+ "epoch": 2.90625,
2265
+ "grad_norm": 0.583017885684967,
2266
+ "learning_rate": 7.347467543052932e-07,
2267
+ "loss": 4.6211,
2268
+ "num_tokens": 508338446.0,
2269
+ "step": 279
2270
+ },
2271
+ {
2272
+ "epoch": 2.9166666666666665,
2273
+ "grad_norm": 0.6637594103813171,
2274
+ "learning_rate": 5.952835600662288e-07,
2275
+ "loss": 3.8064,
2276
+ "num_tokens": 510108388.0,
2277
+ "step": 280
2278
+ },
2279
+ {
2280
+ "epoch": 2.9270833333333335,
2281
+ "grad_norm": 0.5726197957992554,
2282
+ "learning_rate": 4.704455681650788e-07,
2283
+ "loss": 4.9473,
2284
+ "num_tokens": 511943368.0,
2285
+ "step": 281
2286
+ },
2287
+ {
2288
+ "epoch": 2.9375,
2289
+ "grad_norm": 0.630939781665802,
2290
+ "learning_rate": 3.6025114574734785e-07,
2291
+ "loss": 5.369,
2292
+ "num_tokens": 513778092.0,
2293
+ "step": 282
2294
+ },
2295
+ {
2296
+ "epoch": 2.9479166666666665,
2297
+ "grad_norm": 0.7909092307090759,
2298
+ "learning_rate": 2.647165054816325e-07,
2299
+ "loss": 5.3277,
2300
+ "num_tokens": 515612457.0,
2301
+ "step": 283
2302
+ },
2303
+ {
2304
+ "epoch": 2.9583333333333335,
2305
+ "grad_norm": 0.7272047400474548,
2306
+ "learning_rate": 1.838557031742738e-07,
2307
+ "loss": 5.2173,
2308
+ "num_tokens": 517446170.0,
2309
+ "step": 284
2310
+ },
2311
+ {
2312
+ "epoch": 2.96875,
2313
+ "grad_norm": 0.6117963790893555,
2314
+ "learning_rate": 1.1768063570136711e-07,
2315
+ "loss": 5.0083,
2316
+ "num_tokens": 519277051.0,
2317
+ "step": 285
2318
+ },
2319
+ {
2320
+ "epoch": 2.9791666666666665,
2321
+ "grad_norm": 0.7872759699821472,
2322
+ "learning_rate": 6.62010392584067e-08,
2323
+ "loss": 3.5749,
2324
+ "num_tokens": 521007127.0,
2325
+ "step": 286
2326
+ },
2327
+ {
2328
+ "epoch": 2.9895833333333335,
2329
+ "grad_norm": 0.6111645698547363,
2330
+ "learning_rate": 2.942448792778718e-08,
2331
+ "loss": 5.3112,
2332
+ "num_tokens": 522841066.0,
2333
+ "step": 287
2334
+ },
2335
+ {
2336
+ "epoch": 3.0,
2337
+ "grad_norm": 0.5639166235923767,
2338
+ "learning_rate": 7.3563925645059315e-09,
2339
+ "loss": 4.265,
2340
+ "num_tokens": 524657229.0,
2341
+ "step": 288
2342
+ },
2343
+ {
2344
+ "epoch": 3.0,
2345
+ "eval_loss": 0.3267965018749237,
2346
+ "eval_num_tokens": 524657229.0,
2347
+ "eval_runtime": 29.6695,
2348
+ "eval_samples_per_second": 74.588,
2349
+ "eval_steps_per_second": 2.359,
2350
+ "step": 288
2351
+ }
2352
+ ],
2353
+ "logging_steps": 1,
2354
+ "max_steps": 288,
2355
+ "num_input_tokens_seen": 0,
2356
+ "num_train_epochs": 3,
2357
+ "save_steps": 500,
2358
+ "stateful_callbacks": {
2359
+ "TrainerControl": {
2360
+ "args": {
2361
+ "should_epoch_stop": false,
2362
+ "should_evaluate": false,
2363
+ "should_log": false,
2364
+ "should_save": true,
2365
+ "should_training_stop": true
2366
+ },
2367
+ "attributes": {}
2368
+ }
2369
+ },
2370
+ "total_flos": 1.57731504726653e+19,
2371
+ "train_batch_size": 28,
2372
+ "trial_name": null,
2373
+ "trial_params": null
2374
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43452d8d60dc7548ded66680a374ac92fdabfcbd37a0fe52bc71d26de0f4c48f
3
+ size 7697