Text Generation
Transformers
Safetensors
Chinese
medical
chinese
qa
gemma3n
lora
unsloth
conversational
ZhangQiao123 commited on
Commit
9186a47
·
verified ·
1 Parent(s): 478a043

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +88 -176
README.md CHANGED
@@ -1,210 +1,122 @@
1
  ---
2
- base_model: unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit
3
- library_name: peft
4
- pipeline_tag: text-generation
 
5
  tags:
6
- - base_model:adapter:unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit
 
 
 
7
  - lora
8
- - sft
9
- - transformers
10
- - trl
11
  - unsloth
 
 
 
 
 
 
12
  ---
13
 
14
- # Model Card for Model ID
15
-
16
- <!-- Provide a quick summary of what the model is/does. -->
17
-
18
-
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
-
101
- #### Training Hyperparameters
102
-
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
-
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
 
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
 
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
 
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
 
161
- ## Technical Specifications [optional]
 
 
 
 
 
162
 
163
- ### Model Architecture and Objective
164
 
165
- [More Information Needed]
 
 
 
 
166
 
167
- ### Compute Infrastructure
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- #### Hardware
172
 
173
- [More Information Needed]
 
174
 
175
- #### Software
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
178
 
179
- ## Citation [optional]
 
 
 
 
 
180
 
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
182
 
183
- **BibTeX:**
184
 
185
- [More Information Needed]
 
 
 
 
186
 
187
- **APA:**
188
 
189
- [More Information Needed]
 
 
 
 
190
 
191
- ## Glossary [optional]
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## More Information [optional]
 
 
 
198
 
199
- [More Information Needed]
200
 
201
- ## Model Card Authors [optional]
202
 
203
- [More Information Needed]
204
 
205
- ## Model Card Contact
206
 
207
- [More Information Needed]
208
- ### Framework versions
209
 
210
- - PEFT 0.16.0
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ license: apache-2.0
5
+ library_name: transformers
6
  tags:
7
+ - medical
8
+ - chinese
9
+ - qa
10
+ - gemma3n
11
  - lora
 
 
 
12
  - unsloth
13
+ base_model: unsloth/gemma-3n-E4B-it
14
+ datasets:
15
+ - FreedomIntelligence/huatuo_encyclopedia_qa
16
+ - FreedomIntelligence/medical-o1-reasoning-SFT
17
+ - FreedomIntelligence/huatuo_knowledge_graph_qa
18
+ pipeline_tag: text-generation
19
  ---
20
 
21
+ # MedGemma3N-chinese-qa-v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ ## 模型简介
24
 
25
+ MedGemma3N-chinese-qa-v1 是基于 Gemma3N-4B 架构的中文医学问答模型第一阶段版本,专门针对中文医学领域进行了微调优化。
26
 
27
+ ## 模型特点
 
 
 
 
28
 
29
+ - **版本**: v1 (第一阶段基础版本)
30
+ - **基础架构**: Gemma3N-4B + LoRA微调
31
+ - **训练数据**: 13,153条高质量中文医学问答数据
32
+ - **数据扩展**: 相比原始数据增长4.7倍
33
+ - **专业领域**: 涵盖疾病诊断、治疗建议、药物咨询等
34
+ - **后续计划**: 将基于85,000条专业临床数据进行第二阶段增强
35
 
36
+ ## 训练数据来源
37
 
38
+ | 数据源 | 数量 | 占比 | 描述 |
39
+ |--------|------|------|------|
40
+ | 华佗百科问答 | 7,960条 | 60.5% | 复旦大学华佗医学百科问答数据集 |
41
+ | 医疗推理数据 | 2,924条 | 22.2% | FreedomIntelligence医学O1推理数据 |
42
+ | 华佗知识图谱 | 2,269条 | 17.3% | 结构化医学知识问答数据 |
43
 
44
+ ## 训练配置
45
 
46
+ - **基础模型**: unsloth/gemma-3n-E4B-it
47
+ - **微调方法**: LoRA (rank=16, alpha=32)
48
+ - **训练步数**: 8,000步
49
+ - **学习率**: 2e-4
50
+ - **批次大小**: 4 (1×4梯度累积)
51
+ - **优化器**: adamw_8bit
52
 
53
+ ## 使用方法
54
 
55
+ ```python
56
+ from unsloth import FastModel
57
 
58
+ # 加载模型
59
+ model, tokenizer = FastModel.from_pretrained(
60
+ "ZhangQiao123/MedGemma3N-chinese-qa-v1",
61
+ dtype=None,
62
+ load_in_4bit=True
63
+ )
64
 
65
+ # 生成回答
66
+ messages = [{"role": "user", "content": "什么是高血压?"}]
67
+ inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt")
68
 
69
+ outputs = model.generate(
70
+ inputs,
71
+ max_new_tokens=512,
72
+ temperature=0.7,
73
+ do_sample=True
74
+ )
75
 
76
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
77
+ print(response)
78
+ ```
79
 
80
+ ## 应用场景
81
 
82
+ - 中文医学问答
83
+ - 疾病症状咨询
84
+ - 治疗建议提供
85
+ - 药物使用指导
86
+ - 医学知识解释
87
 
88
+ ## 模型性能
89
 
90
+ 该模型在以下方面表现优秀:
91
+ - ✅ 医学术语理解准确
92
+ - ✅ 疾病诊断推理合理
93
+ - ✅ 治疗建议专业可靠
94
+ - ✅ 中文医学表达流畅
95
 
96
+ ## 注意事项
97
 
98
+ ⚠️ **重要提醒**:
99
+ - 本模型仅供学习研究使用
100
+ - 不能替代专业医生诊断
101
+ - 实际医疗决策请咨询专业医生
102
+ - 模型回答仅供参考
103
 
104
+ ## 技术细节
105
 
106
+ - **模型大小**: ~4B参数 + LoRA适配器
107
+ - **推理速度**: 支持4位量化快速推理
108
+ - **内存需求**: 约8-12GB GPU内存
109
+ - **支持框架**: Transformers, Unsloth
110
 
111
+ ## 开发团队
112
 
113
+ 基于Unsloth框架和FreedomIntelligence数据集开发
114
 
115
+ ## 许可证
116
 
117
+ Apache 2.0
118
 
119
+ ## 更新日志
 
120
 
121
+ - **v1.0** (2025-01-25): 第一阶段基础版本发布,基于13,153条中文医学数据训练
122
+ - **计划v2.0**: 第二阶段专业增强版本,将基于85,000条专业临床数据进行训练