Upload model
Browse files- README.md +199 -0
- config.json +36 -0
- configuration_embodiedmae.py +97 -0
- model.safetensors +3 -0
- modeling_embodiedmae.py +193 -0
- modular_embodiedmae.py +1195 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_layernorm": true,
|
3 |
+
"architectures": [
|
4 |
+
"EmbodiedMAEModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_embodiedmae.EmbodiedMAEConfig",
|
9 |
+
"AutoModel": "modeling_embodiedmae.EmbodiedMAEModel"
|
10 |
+
},
|
11 |
+
"decoder_hidden_size": 512,
|
12 |
+
"decoder_num_attention_heads": 8,
|
13 |
+
"decoder_num_hidden_layers": 4,
|
14 |
+
"dirichlet_alpha": 1.0,
|
15 |
+
"drop_path_rate": 0.0,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.0,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"image_size": 224,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_eps": 1e-06,
|
22 |
+
"layerscale_value": 1.0,
|
23 |
+
"mlp_ratio": 4,
|
24 |
+
"model_type": "EmbodiedMAE",
|
25 |
+
"norm_pix_loss": false,
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
+
"num_pc_centers": 196,
|
29 |
+
"num_pc_knn": 64,
|
30 |
+
"patch_size": 16,
|
31 |
+
"qkv_bias": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.48.0",
|
34 |
+
"unmask_sz": 98,
|
35 |
+
"use_swiglu_ffn": false
|
36 |
+
}
|
configuration_embodiedmae.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
|
3 |
+
|
4 |
+
|
5 |
+
class EmbodiedMAEConfig(PretrainedConfig):
|
6 |
+
model_type = "EmbodiedMAE"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
hidden_size: int = 768,
|
11 |
+
num_hidden_layers: int = 12,
|
12 |
+
num_attention_heads: int = 12,
|
13 |
+
mlp_ratio: int = 4,
|
14 |
+
hidden_dropout_prob: float = 0.0,
|
15 |
+
attention_probs_dropout_prob: float = 0.0,
|
16 |
+
initializer_range: float = 0.02,
|
17 |
+
qkv_bias: bool = True,
|
18 |
+
apply_layernorm: bool = True,
|
19 |
+
attn_implementation: str = "eager",
|
20 |
+
layerscale_value: float = 1.0,
|
21 |
+
drop_path_rate: float = 0.0,
|
22 |
+
layer_norm_eps: float = 1e-6,
|
23 |
+
hidden_act: str = "gelu",
|
24 |
+
use_swiglu_ffn: bool = False,
|
25 |
+
image_size: int = 224,
|
26 |
+
patch_size: int = 16,
|
27 |
+
num_pc_centers: int = 196,
|
28 |
+
num_pc_knn: int = 64,
|
29 |
+
dirichlet_alpha: int = 1.0,
|
30 |
+
unmask_sz: int = 98,
|
31 |
+
decoder_hidden_size: int = 512,
|
32 |
+
decoder_num_hidden_layers: int = 4,
|
33 |
+
decoder_num_attention_heads: int = 8,
|
34 |
+
norm_pix_loss: int = False,
|
35 |
+
**kwargs,
|
36 |
+
):
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.num_hidden_layers = num_hidden_layers
|
39 |
+
self.num_attention_heads = num_attention_heads
|
40 |
+
self.mlp_ratio = mlp_ratio
|
41 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
42 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
43 |
+
self.initializer_range = initializer_range
|
44 |
+
|
45 |
+
self.image_size = image_size
|
46 |
+
self.patch_size = patch_size
|
47 |
+
self.qkv_bias = qkv_bias
|
48 |
+
self.apply_layernorm = apply_layernorm
|
49 |
+
self.num_pc_centers = num_pc_centers
|
50 |
+
self.num_pc_knn = num_pc_knn
|
51 |
+
self.dirichlet_alpha = dirichlet_alpha
|
52 |
+
self.unmask_sz = unmask_sz
|
53 |
+
|
54 |
+
self._attn_implementation = attn_implementation
|
55 |
+
self.layerscale_value = layerscale_value
|
56 |
+
self.drop_path_rate = drop_path_rate
|
57 |
+
self.layer_norm_eps = layer_norm_eps
|
58 |
+
self.hidden_act = hidden_act
|
59 |
+
self.use_swiglu_ffn = use_swiglu_ffn
|
60 |
+
|
61 |
+
self.decoder_hidden_size = decoder_hidden_size
|
62 |
+
self.decoder_num_hidden_layers = decoder_num_hidden_layers
|
63 |
+
self.decoder_num_attention_heads = decoder_num_attention_heads
|
64 |
+
|
65 |
+
self.norm_pix_loss = norm_pix_loss
|
66 |
+
|
67 |
+
super().__init__(**kwargs)
|
68 |
+
|
69 |
+
|
70 |
+
BACKBONE_KWARGS = {
|
71 |
+
"hidden_size",
|
72 |
+
"num_hidden_layers",
|
73 |
+
"num_attention_heads",
|
74 |
+
"mlp_ratio",
|
75 |
+
"hidden_dropout_prob",
|
76 |
+
"attention_probs_dropout_prob",
|
77 |
+
"initializer_range",
|
78 |
+
"qkv_bias",
|
79 |
+
"apply_layernorm",
|
80 |
+
"attn_implementation",
|
81 |
+
"layerscale_value",
|
82 |
+
"drop_path_rate",
|
83 |
+
"layer_norm_eps",
|
84 |
+
"hidden_act",
|
85 |
+
"use_swiglu_ffn",
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
# get config for different size
|
90 |
+
def get_embodied_mae_config(size: str = "base") -> EmbodiedMAEConfig:
|
91 |
+
backbone_config = Dinov2Config.from_pretrained(f"facebook/dinov2-{size}")
|
92 |
+
kwargs = {k: v for k, v in backbone_config.to_dict().items() if k in BACKBONE_KWARGS}
|
93 |
+
norm_pix_loss = True if size == "giant" else False
|
94 |
+
return EmbodiedMAEConfig(**kwargs, norm_pix_loss=norm_pix_loss)
|
95 |
+
|
96 |
+
|
97 |
+
__all__ = [EmbodiedMAEConfig, get_embodied_mae_config]
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5de63a523109b61f8b10b4dee84f36bf06e3427e2359081d891ed8f2f9603749
|
3 |
+
size 348014176
|
modeling_embodiedmae.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from transformers.models.dinov2.modeling_dinov2 import Dinov2Encoder
|
7 |
+
|
8 |
+
from .configuration_embodiedmae import EmbodiedMAEConfig
|
9 |
+
from .modular_embodiedmae import (
|
10 |
+
EmbodiedMAEDecoder,
|
11 |
+
EmbodiedMAEDepthEmbeddings,
|
12 |
+
EmbodiedMAEPointCloudEmbeddings,
|
13 |
+
EmbodiedMAERGBEmbeddings,
|
14 |
+
EncoderModelOutput,
|
15 |
+
concat_sequence_with_dummy,
|
16 |
+
prepare_shuffle_idx,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class EmbodiedMAEModel(PreTrainedModel):
|
21 |
+
config_class = EmbodiedMAEConfig
|
22 |
+
|
23 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
24 |
+
super().__init__(config)
|
25 |
+
self.config = config
|
26 |
+
|
27 |
+
self.dirichlet = torch.distributions.Dirichlet(torch.full((3,), config.dirichlet_alpha))
|
28 |
+
|
29 |
+
self.rgb_embeddings = EmbodiedMAERGBEmbeddings(config)
|
30 |
+
self.depth_embeddings = EmbodiedMAEDepthEmbeddings(config)
|
31 |
+
self.pc_embeddings = EmbodiedMAEPointCloudEmbeddings(config)
|
32 |
+
|
33 |
+
self.encoder = Dinov2Encoder(config)
|
34 |
+
|
35 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
36 |
+
|
37 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
38 |
+
self.embedding_sz = (
|
39 |
+
num_patches,
|
40 |
+
num_patches,
|
41 |
+
config.num_pc_centers,
|
42 |
+
) # token size for each modality
|
43 |
+
self.unmask_sz = config.unmask_sz # number of unmasked tokens
|
44 |
+
|
45 |
+
def get_input_embeddings(
|
46 |
+
self,
|
47 |
+
rgb: Optional[torch.Tensor],
|
48 |
+
depth: Optional[torch.Tensor],
|
49 |
+
pc: Optional[torch.Tensor],
|
50 |
+
add_mask: bool = True,
|
51 |
+
unmask_sz: Optional[int] = None,
|
52 |
+
forward_pc: bool = True,
|
53 |
+
shuffle_idx: Optional[torch.Tensor] = None,
|
54 |
+
):
|
55 |
+
# provide at least one modality
|
56 |
+
assert any([rgb is not None, depth is not None, pc is not None])
|
57 |
+
|
58 |
+
# embeddings
|
59 |
+
rgb_emb = self.rgb_embeddings(rgb)
|
60 |
+
depth_emb = self.depth_embeddings(depth)
|
61 |
+
pc_emb, pc_centers, pc_knn = self.pc_embeddings(pc)
|
62 |
+
if not forward_pc:
|
63 |
+
pc = None
|
64 |
+
pc_emb = None
|
65 |
+
|
66 |
+
# concat embeddings
|
67 |
+
all_emb = concat_sequence_with_dummy([rgb_emb, depth_emb, pc_emb], self.embedding_sz)
|
68 |
+
|
69 |
+
# prepare shuffle indices
|
70 |
+
shuffle_idx, restore_idx, unmask_sz = prepare_shuffle_idx(
|
71 |
+
has_rgb=rgb is not None,
|
72 |
+
has_depth=depth is not None,
|
73 |
+
has_pc=pc is not None,
|
74 |
+
batch_size=all_emb.shape[0],
|
75 |
+
unmask_sz=self.unmask_sz if unmask_sz is None else unmask_sz,
|
76 |
+
dirichlet=self.dirichlet,
|
77 |
+
embedding_sz=self.embedding_sz,
|
78 |
+
add_mask=add_mask,
|
79 |
+
shuffle_idx=shuffle_idx,
|
80 |
+
device=all_emb.device,
|
81 |
+
)
|
82 |
+
|
83 |
+
# get unmasked embeddings
|
84 |
+
unmasked_emb = torch.gather(
|
85 |
+
all_emb, 1, shuffle_idx[:, :unmask_sz, None].repeat(1, 1, all_emb.shape[-1])
|
86 |
+
)
|
87 |
+
|
88 |
+
return EncoderModelOutput(
|
89 |
+
embedding=unmasked_emb,
|
90 |
+
pc_centers=pc_centers,
|
91 |
+
pc_knn=pc_knn,
|
92 |
+
shuffle_idx=shuffle_idx,
|
93 |
+
restore_idx=restore_idx,
|
94 |
+
add_mask=add_mask,
|
95 |
+
unmask_sz=unmask_sz,
|
96 |
+
)
|
97 |
+
|
98 |
+
def get_last_hidden_states(
|
99 |
+
self,
|
100 |
+
embedding_output: EncoderModelOutput,
|
101 |
+
output_attentions: bool = False,
|
102 |
+
output_hidden_states: bool = False,
|
103 |
+
):
|
104 |
+
embedding = embedding_output.embedding
|
105 |
+
|
106 |
+
encoder_outputs = self.encoder(
|
107 |
+
embedding,
|
108 |
+
output_attentions=output_attentions,
|
109 |
+
output_hidden_states=output_hidden_states,
|
110 |
+
)
|
111 |
+
sequence_output = encoder_outputs[0]
|
112 |
+
sequence_output = self.layernorm(sequence_output)
|
113 |
+
|
114 |
+
embedding_output.last_hidden_states = sequence_output
|
115 |
+
embedding_output.hidden_states = encoder_outputs.hidden_states
|
116 |
+
embedding_output.attentions = encoder_outputs.attentions
|
117 |
+
|
118 |
+
return embedding_output
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
rgb: Optional[torch.Tensor],
|
123 |
+
depth: Optional[torch.Tensor],
|
124 |
+
pc: Optional[torch.Tensor],
|
125 |
+
add_mask: bool = True,
|
126 |
+
unmask_sz: Optional[int] = None,
|
127 |
+
output_attentions: bool = False,
|
128 |
+
output_hidden_states: bool = False,
|
129 |
+
forward_pc: bool = True,
|
130 |
+
):
|
131 |
+
embedding_output = self.get_input_embeddings(
|
132 |
+
rgb, depth, pc, add_mask, unmask_sz, forward_pc
|
133 |
+
)
|
134 |
+
return self.get_last_hidden_states(
|
135 |
+
embedding_output, output_attentions, output_hidden_states
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
class EmbodiedMAEForMaskedImageModeling(EmbodiedMAEModel):
|
140 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
141 |
+
super().__init__(config)
|
142 |
+
self.decoder = EmbodiedMAEDecoder(config)
|
143 |
+
|
144 |
+
def forward(
|
145 |
+
self,
|
146 |
+
rgb: Optional[torch.Tensor],
|
147 |
+
depth: Optional[torch.Tensor],
|
148 |
+
pc: Optional[torch.Tensor],
|
149 |
+
add_mask: bool = True,
|
150 |
+
unmask_sz: Optional[int] = None,
|
151 |
+
output_attentions: bool = False,
|
152 |
+
output_hidden_states: bool = False,
|
153 |
+
forward_pc: bool = True,
|
154 |
+
):
|
155 |
+
encoder_output = super().forward(
|
156 |
+
rgb, depth, pc, add_mask, unmask_sz, output_attentions, output_hidden_states, forward_pc
|
157 |
+
)
|
158 |
+
decoder_input = self.decoder.get_decoder_input(encoder_output)
|
159 |
+
return self.decoder(decoder_input)
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def visualize(
|
163 |
+
self,
|
164 |
+
rgb: Optional[torch.Tensor],
|
165 |
+
depth: Optional[torch.Tensor],
|
166 |
+
pc: Optional[torch.Tensor],
|
167 |
+
mask_rgb: bool = False,
|
168 |
+
mask_depth: bool = False,
|
169 |
+
mask_pc: bool = False,
|
170 |
+
add_mask: bool = True,
|
171 |
+
unmask_sz: Optional[int] = None,
|
172 |
+
output_attentions: bool = False,
|
173 |
+
output_hidden_states: bool = False,
|
174 |
+
forward_pc: bool = True,
|
175 |
+
):
|
176 |
+
_rgb = None if mask_rgb else rgb
|
177 |
+
_depth = None if mask_depth else depth
|
178 |
+
_pc = None if mask_pc else pc
|
179 |
+
encoder_output = super().forward(
|
180 |
+
_rgb,
|
181 |
+
_depth,
|
182 |
+
_pc,
|
183 |
+
add_mask,
|
184 |
+
unmask_sz,
|
185 |
+
output_attentions,
|
186 |
+
output_hidden_states,
|
187 |
+
forward_pc,
|
188 |
+
)
|
189 |
+
decoder_input = self.decoder.get_decoder_input(encoder_output)
|
190 |
+
return self.decoder.visualize(decoder_input, rgb, depth, pc)
|
191 |
+
|
192 |
+
|
193 |
+
__all__ = [EmbodiedMAEModel, EmbodiedMAEForMaskedImageModeling]
|
modular_embodiedmae.py
ADDED
@@ -0,0 +1,1195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple
|
4 |
+
|
5 |
+
import einops
|
6 |
+
import numba
|
7 |
+
import numpy as np
|
8 |
+
import pytorch3d.ops as torch3d_ops
|
9 |
+
import pytorch_lightning as L
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from pytorch3d.loss import chamfer_distance
|
13 |
+
from transformers import (
|
14 |
+
AutoModelForMaskedImageModeling,
|
15 |
+
Dinov2Config,
|
16 |
+
Dinov2Model,
|
17 |
+
PretrainedConfig,
|
18 |
+
PreTrainedModel,
|
19 |
+
)
|
20 |
+
from transformers.models.dinov2.modeling_dinov2 import Dinov2Encoder, Dinov2Layer
|
21 |
+
from transformers.utils import ModelOutput
|
22 |
+
|
23 |
+
from .configuration_embodiedmae import EmbodiedMAEConfig
|
24 |
+
|
25 |
+
|
26 |
+
def concat_tensor(
|
27 |
+
tensors: List[torch.Tensor | None], dim: int = -1, **kwargs
|
28 |
+
) -> Tuple[torch.Tensor, list]:
|
29 |
+
filtered_tensors = [t for t in tensors if t is not None]
|
30 |
+
mask = [(1.0 if t is not None else 0.0) for t in tensors]
|
31 |
+
return torch.cat(filtered_tensors, dim=dim, **kwargs), mask
|
32 |
+
|
33 |
+
|
34 |
+
def concat_sequence_with_dummy(
|
35 |
+
tensors: List[torch.Tensor | None], seq_lens: List[int]
|
36 |
+
) -> torch.Tensor:
|
37 |
+
"""Concatenate a sequence of tensors. If a tensor is `None`, it will be replaced by a dummy tensor of zeros.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
tensors (List[torch.Tensor | None]):
|
41 |
+
Tensors to concatenate. If a tensor is `None`, it will be replaced by a dummy tensor of zeros.
|
42 |
+
seq_lens (List[int]):
|
43 |
+
Expected sequence length of each tensor.
|
44 |
+
"""
|
45 |
+
assert len(tensors) == len(seq_lens)
|
46 |
+
for t in tensors:
|
47 |
+
if t is not None:
|
48 |
+
b, d = t.shape[0], t.shape[2]
|
49 |
+
device, dtype = t.device, t.dtype
|
50 |
+
x = []
|
51 |
+
for t, seq_len in zip(tensors, seq_lens):
|
52 |
+
if t is None:
|
53 |
+
x.append(torch.zeros((b, seq_len, d), dtype=dtype, device=device))
|
54 |
+
else:
|
55 |
+
x.append(t)
|
56 |
+
return torch.cat(x, dim=1)
|
57 |
+
|
58 |
+
|
59 |
+
def patchify(pixel_values, patch_size, num_channels, interpolate_pos_encoding: bool = False):
|
60 |
+
"""
|
61 |
+
Args:
|
62 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
63 |
+
Pixel values.
|
64 |
+
interpolate_pos_encoding (`bool`, *optional*, default `False`):
|
65 |
+
interpolation flag passed during the forward pass.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
69 |
+
Patchified pixel values.
|
70 |
+
"""
|
71 |
+
# sanity checks
|
72 |
+
if not interpolate_pos_encoding and (
|
73 |
+
pixel_values.shape[2] != pixel_values.shape[3] or pixel_values.shape[2] % patch_size != 0
|
74 |
+
):
|
75 |
+
raise ValueError(
|
76 |
+
"Make sure the pixel values have a squared size that is divisible by the patch size"
|
77 |
+
)
|
78 |
+
if pixel_values.shape[1] != num_channels:
|
79 |
+
raise ValueError(
|
80 |
+
"Make sure the number of channels of the pixel values is equal to the one set in the configuration"
|
81 |
+
)
|
82 |
+
|
83 |
+
# patchify
|
84 |
+
batch_size = pixel_values.shape[0]
|
85 |
+
num_patches_h = pixel_values.shape[2] // patch_size
|
86 |
+
num_patches_w = pixel_values.shape[3] // patch_size
|
87 |
+
patchified_pixel_values = pixel_values.reshape(
|
88 |
+
batch_size, num_channels, num_patches_h, patch_size, num_patches_w, patch_size
|
89 |
+
)
|
90 |
+
patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values)
|
91 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
92 |
+
batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels
|
93 |
+
)
|
94 |
+
return patchified_pixel_values
|
95 |
+
|
96 |
+
|
97 |
+
class CrossAttention(nn.Module):
|
98 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0):
|
99 |
+
super().__init__()
|
100 |
+
self.num_heads = num_heads
|
101 |
+
|
102 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
103 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
104 |
+
|
105 |
+
self.attn_drop = attn_drop
|
106 |
+
self.proj = nn.Linear(dim, dim)
|
107 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
108 |
+
|
109 |
+
def forward(self, x, context):
|
110 |
+
q = self.q(x)
|
111 |
+
q = einops.rearrange(q, "b t (h d) -> b h t d", h=self.num_heads)
|
112 |
+
kv = self.kv(context)
|
113 |
+
kv = einops.rearrange(kv, "b t (h d) -> b h t d", h=self.num_heads)
|
114 |
+
k, v = torch.chunk(kv, 2, dim=-1)
|
115 |
+
|
116 |
+
attn_drop = self.attn_drop if self.training else 0.0
|
117 |
+
x = nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=attn_drop)
|
118 |
+
x = einops.rearrange(x, "b h t d -> b t (h d)")
|
119 |
+
x = self.proj(x)
|
120 |
+
x = self.proj_drop(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
def unpatchify(patchified_pixel_values, patch_size, num_channels, original_image_size):
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
128 |
+
Patchified pixel values.
|
129 |
+
original_image_size (`Tuple[int, int]`, *optional*):
|
130 |
+
Original image size.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
134 |
+
Pixel values.
|
135 |
+
"""
|
136 |
+
original_height, original_width = original_image_size
|
137 |
+
num_patches_h = original_height // patch_size
|
138 |
+
num_patches_w = original_width // patch_size
|
139 |
+
# sanity check
|
140 |
+
if num_patches_h * num_patches_w != patchified_pixel_values.shape[1]:
|
141 |
+
raise ValueError(
|
142 |
+
f"The number of patches in the patchified pixel values {patchified_pixel_values.shape[1]}, does not match the number of patches on original image {num_patches_h}*{num_patches_w}"
|
143 |
+
)
|
144 |
+
|
145 |
+
# unpatchify
|
146 |
+
batch_size = patchified_pixel_values.shape[0]
|
147 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
148 |
+
batch_size,
|
149 |
+
num_patches_h,
|
150 |
+
num_patches_w,
|
151 |
+
patch_size,
|
152 |
+
patch_size,
|
153 |
+
num_channels,
|
154 |
+
)
|
155 |
+
patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values)
|
156 |
+
pixel_values = patchified_pixel_values.reshape(
|
157 |
+
batch_size,
|
158 |
+
num_channels,
|
159 |
+
num_patches_h * patch_size,
|
160 |
+
num_patches_w * patch_size,
|
161 |
+
)
|
162 |
+
return pixel_values
|
163 |
+
|
164 |
+
|
165 |
+
@numba.jit(nopython=True)
|
166 |
+
def get_mm_shuffle_indices(p, embedding_sz, unmask_sz=128):
|
167 |
+
b = p.shape[0]
|
168 |
+
n_modals = len(embedding_sz)
|
169 |
+
embedding_sz = np.array(embedding_sz)
|
170 |
+
indices = np.empty((b, embedding_sz.sum()), dtype=np.int64)
|
171 |
+
|
172 |
+
for i in numba.prange(b):
|
173 |
+
um_sz = np.round(p[i] * unmask_sz).astype(np.int64)
|
174 |
+
um_sz[-1] = unmask_sz - um_sz[:-1].sum()
|
175 |
+
m_sz = embedding_sz - um_sz
|
176 |
+
cm_um_sz = np.cumsum(um_sz)
|
177 |
+
cm_m_sz = np.cumsum(m_sz)
|
178 |
+
|
179 |
+
for j in range(n_modals):
|
180 |
+
shuffle_idx = np.argsort(np.random.random(embedding_sz[j])) + embedding_sz[:j].sum()
|
181 |
+
um = shuffle_idx[: um_sz[j]]
|
182 |
+
m = shuffle_idx[um_sz[j] :]
|
183 |
+
|
184 |
+
if j == 0:
|
185 |
+
indices[i, : cm_um_sz[j]] = um
|
186 |
+
indices[i, unmask_sz : cm_m_sz[j] + unmask_sz] = m
|
187 |
+
else:
|
188 |
+
indices[i, cm_um_sz[j - 1] : cm_um_sz[j]] = um
|
189 |
+
indices[i, cm_m_sz[j - 1] + unmask_sz : cm_m_sz[j] + unmask_sz] = m
|
190 |
+
return indices
|
191 |
+
|
192 |
+
|
193 |
+
def prepare_shuffle_idx(
|
194 |
+
has_rgb: bool,
|
195 |
+
has_depth: bool,
|
196 |
+
has_pc: bool,
|
197 |
+
batch_size: int,
|
198 |
+
unmask_sz: int,
|
199 |
+
dirichlet: torch.distributions.Dirichlet,
|
200 |
+
embedding_sz: Tuple[int, int, int],
|
201 |
+
# rgb: Optional[torch.Tensor],
|
202 |
+
# depth: Optional[torch.Tensor],
|
203 |
+
# pc: Optional[torch.Tensor],
|
204 |
+
add_mask: bool = True,
|
205 |
+
shuffle_idx: Optional[torch.Tensor] = None,
|
206 |
+
device: Optional[torch.device] = "cuda",
|
207 |
+
):
|
208 |
+
"""Prepare shuffle indices for the input embeddings.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
rgb (Optional[torch.Tensor]):
|
212 |
+
RGB image from [-1, 1] range, shape (B, C, H, W).
|
213 |
+
depth (Optional[torch.Tensor]):
|
214 |
+
Depth map from [0, 2] range, shape (B, C, H, W).
|
215 |
+
pc (Optional[torch.Tensor]):
|
216 |
+
Point cloud data, shape (B, N, 3), where N is the number of points.
|
217 |
+
add_mask (bool, optional):
|
218 |
+
Whether to add a mask for masked autoencoding. Defaults to True.
|
219 |
+
unmask_sz (Optional[int], optional):
|
220 |
+
Size of the unmasked tokens. If None, it will be set to self.unmask_sz. Defaults to None.
|
221 |
+
shuffle_idx (Optional[torch.Tensor], optional):
|
222 |
+
Shuffle indices for the input embeddings. If provided, it will be used to restore the original order.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
_type_: _description_
|
226 |
+
"""
|
227 |
+
# provide at least one modality
|
228 |
+
if not any([has_rgb, has_depth, has_pc]):
|
229 |
+
raise ValueError("provide at least one modality")
|
230 |
+
|
231 |
+
b = batch_size
|
232 |
+
|
233 |
+
if add_mask:
|
234 |
+
if shuffle_idx is not None:
|
235 |
+
restore_idx = torch.argsort(shuffle_idx, 1)
|
236 |
+
else:
|
237 |
+
mask = [float(each) for each in [has_rgb, has_depth, has_pc]]
|
238 |
+
# multi-modal shuffle
|
239 |
+
if sum(mask) > 1:
|
240 |
+
p = dirichlet.sample((b,)).numpy()
|
241 |
+
p = p * np.array(mask)[None]
|
242 |
+
p = p / p.sum(-1, keepdims=True)
|
243 |
+
shuffle_idx = get_mm_shuffle_indices(p, embedding_sz, unmask_sz)
|
244 |
+
# uni-modal shuffle
|
245 |
+
else:
|
246 |
+
shuffle_idx = get_shuffle_indices(embedding_sz[mask.index(1.0)])
|
247 |
+
restore_idx = np.argsort(shuffle_idx, 1)
|
248 |
+
shuffle_idx = torch.tensor(shuffle_idx, device=device)
|
249 |
+
restore_idx = torch.tensor(restore_idx, device=device)
|
250 |
+
else:
|
251 |
+
# the missing modality is regarded as masked
|
252 |
+
unmask_parts, mask_parts = [], []
|
253 |
+
cumsum_emb_sz = np.cumsum(embedding_sz)
|
254 |
+
for i, has_modal in enumerate([has_rgb, has_depth, has_pc]):
|
255 |
+
indices = torch.arange(
|
256 |
+
cumsum_emb_sz[i - 1] if i > 0 else 0,
|
257 |
+
cumsum_emb_sz[i],
|
258 |
+
device=device,
|
259 |
+
)
|
260 |
+
if has_modal:
|
261 |
+
unmask_parts.append(indices)
|
262 |
+
else:
|
263 |
+
mask_parts.append(indices)
|
264 |
+
shuffle_idx = torch.cat(unmask_parts + mask_parts, dim=0)[None].repeat(b, 1)
|
265 |
+
restore_idx = torch.argsort(shuffle_idx, 1)
|
266 |
+
unmask_sz = sum([len(part) for part in unmask_parts])
|
267 |
+
|
268 |
+
return shuffle_idx, restore_idx, unmask_sz
|
269 |
+
|
270 |
+
|
271 |
+
@numba.jit(nopython=True)
|
272 |
+
def get_shuffle_indices(embedding_sz):
|
273 |
+
shuffle_idx = np.argsort(np.random.random(embedding_sz))
|
274 |
+
return shuffle_idx
|
275 |
+
|
276 |
+
|
277 |
+
def torch_int(x):
|
278 |
+
import torch
|
279 |
+
|
280 |
+
return x.to(torch.int64) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x)
|
281 |
+
|
282 |
+
|
283 |
+
def fps_and_knn(x: torch.Tensor, num_centers: int, num_knn: int):
|
284 |
+
dtype = x.dtype
|
285 |
+
x = x.to(torch.float32)
|
286 |
+
centers, _ = torch3d_ops.sample_farthest_points(x, K=num_centers) # (b, num_centers, 3)
|
287 |
+
knn_points = torch3d_ops.knn_points(
|
288 |
+
centers, x, K=num_knn, return_nn=True
|
289 |
+
).knn # (b, num_centers, knn, 3)
|
290 |
+
return centers.to(dtype), knn_points.to(dtype)
|
291 |
+
|
292 |
+
|
293 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
294 |
+
"""
|
295 |
+
Create 2D sin/cos positional embeddings.
|
296 |
+
|
297 |
+
Args:
|
298 |
+
embed_dim (`int`):
|
299 |
+
Embedding dimension.
|
300 |
+
grid_size (`int`):
|
301 |
+
The grid height and width.
|
302 |
+
add_cls_token (`bool`, *optional*, defaults to `False`):
|
303 |
+
Whether or not to add a classification (CLS) token.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
307 |
+
position embeddings (with or without classification token)
|
308 |
+
"""
|
309 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
310 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
311 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
312 |
+
grid = np.stack(grid, axis=0)
|
313 |
+
|
314 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
315 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
316 |
+
if add_cls_token:
|
317 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
318 |
+
return pos_embed
|
319 |
+
|
320 |
+
|
321 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
322 |
+
if embed_dim % 2 != 0:
|
323 |
+
raise ValueError("embed_dim must be even")
|
324 |
+
|
325 |
+
# use half of dimensions to encode grid_h
|
326 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
327 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
328 |
+
|
329 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
330 |
+
return emb
|
331 |
+
|
332 |
+
|
333 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
334 |
+
"""
|
335 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
336 |
+
"""
|
337 |
+
if embed_dim % 2 != 0:
|
338 |
+
raise ValueError("embed_dim must be even")
|
339 |
+
|
340 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
341 |
+
omega /= embed_dim / 2.0
|
342 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
343 |
+
|
344 |
+
pos = pos.reshape(-1) # (M,)
|
345 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
346 |
+
|
347 |
+
emb_sin = np.sin(out) # (M, D/2)
|
348 |
+
emb_cos = np.cos(out) # (M, D/2)
|
349 |
+
|
350 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
351 |
+
return emb
|
352 |
+
|
353 |
+
|
354 |
+
@dataclass
|
355 |
+
class EncoderModelOutput(ModelOutput):
|
356 |
+
embedding: torch.Tensor = None
|
357 |
+
pc_centers: torch.Tensor = None
|
358 |
+
pc_knn: torch.Tensor = None
|
359 |
+
shuffle_idx: torch.Tensor = None
|
360 |
+
restore_idx: torch.Tensor = None
|
361 |
+
last_hidden_states: Optional[torch.Tensor] = None
|
362 |
+
add_mask: bool = None
|
363 |
+
hidden_states: Optional[torch.Tensor] = None
|
364 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
365 |
+
unmask_sz: int = None
|
366 |
+
|
367 |
+
|
368 |
+
@dataclass
|
369 |
+
class DecoderInput(ModelOutput):
|
370 |
+
rgb_embedding: torch.Tensor = None
|
371 |
+
depth_embedding: torch.Tensor = None
|
372 |
+
pc_embedding: torch.Tensor = None
|
373 |
+
unmasked_emb: torch.Tensor = None
|
374 |
+
shuffle_idx: torch.Tensor = None
|
375 |
+
pc_centers: torch.Tensor = None
|
376 |
+
pc_knn: torch.Tensor = None
|
377 |
+
add_mask: bool = None
|
378 |
+
unmask_sz: int = None
|
379 |
+
|
380 |
+
|
381 |
+
class SharedMlp(nn.Module):
|
382 |
+
def __init__(self, in_dim: int, out_dim: int):
|
383 |
+
super().__init__()
|
384 |
+
self.net = nn.Sequential(
|
385 |
+
nn.Linear(in_dim, out_dim),
|
386 |
+
nn.LayerNorm(out_dim),
|
387 |
+
nn.GELU(approximate="tanh"),
|
388 |
+
)
|
389 |
+
|
390 |
+
def forward(self, x: torch.Tensor):
|
391 |
+
return self.net(x)
|
392 |
+
|
393 |
+
|
394 |
+
class MaxPool(nn.Module):
|
395 |
+
def __init__(self, dim: int):
|
396 |
+
super().__init__()
|
397 |
+
self.dim = dim
|
398 |
+
|
399 |
+
def forward(self, x: torch.Tensor):
|
400 |
+
return x.max(self.dim)[0]
|
401 |
+
|
402 |
+
|
403 |
+
class PointGroupEmbedding(nn.Module):
|
404 |
+
def __init__(self, point_dim: int, d_model: int):
|
405 |
+
super().__init__()
|
406 |
+
self.net = nn.Sequential(
|
407 |
+
SharedMlp(point_dim, 64),
|
408 |
+
SharedMlp(64, 128),
|
409 |
+
SharedMlp(128, 256),
|
410 |
+
MaxPool(-2),
|
411 |
+
nn.Linear(256, d_model),
|
412 |
+
)
|
413 |
+
|
414 |
+
def forward(self, x: torch.Tensor):
|
415 |
+
return self.net(x)
|
416 |
+
|
417 |
+
|
418 |
+
class Conv2dPatchify(nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
patch_size: int = 14,
|
422 |
+
hidden_size: int = 768,
|
423 |
+
num_channels: int = 3,
|
424 |
+
):
|
425 |
+
super().__init__()
|
426 |
+
self.num_channels = num_channels
|
427 |
+
self.patchify = nn.Conv2d(
|
428 |
+
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
|
429 |
+
)
|
430 |
+
|
431 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
432 |
+
num_channels = pixel_values.shape[-3]
|
433 |
+
if num_channels != self.num_channels:
|
434 |
+
raise ValueError(
|
435 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
436 |
+
f" Expected {self.num_channels} but got {num_channels}."
|
437 |
+
)
|
438 |
+
embeddings = self.patchify(pixel_values).flatten(2).transpose(1, 2)
|
439 |
+
return embeddings
|
440 |
+
|
441 |
+
|
442 |
+
class PatchEmbeddings(nn.Module):
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
image_size: int = 224,
|
446 |
+
patch_size: int = 14,
|
447 |
+
hidden_size: int = 768,
|
448 |
+
num_channels: int = 3,
|
449 |
+
dropout: float = 0.0,
|
450 |
+
):
|
451 |
+
super().__init__()
|
452 |
+
self.num_channels = num_channels
|
453 |
+
self.embeddings = Conv2dPatchify(patch_size, hidden_size, num_channels)
|
454 |
+
# Use learnable positional embeddings initialized at sin-cos
|
455 |
+
pos_emb = get_2d_sincos_pos_embed(hidden_size, image_size // patch_size)
|
456 |
+
pos_emb = torch.tensor(pos_emb, dtype=torch.float32)[None]
|
457 |
+
self.position_embeddings = nn.Parameter(pos_emb)
|
458 |
+
self.dropout = nn.Dropout(dropout)
|
459 |
+
|
460 |
+
def interpolate_pos_encoding(
|
461 |
+
self, embeddings: torch.Tensor, height: int, width: int
|
462 |
+
) -> torch.Tensor:
|
463 |
+
"""
|
464 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
465 |
+
images. This method is also adapted to support torch.jit tracing and interpolation at torch.float32 precision.
|
466 |
+
|
467 |
+
Adapted from:
|
468 |
+
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
469 |
+
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
470 |
+
"""
|
471 |
+
|
472 |
+
num_patches = embeddings.shape[1]
|
473 |
+
num_positions = self.position_embeddings.shape[1]
|
474 |
+
|
475 |
+
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
476 |
+
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
477 |
+
return self.position_embeddings
|
478 |
+
|
479 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
480 |
+
|
481 |
+
dim = embeddings.shape[-1]
|
482 |
+
|
483 |
+
new_height = height // self.patch_size
|
484 |
+
new_width = width // self.patch_size
|
485 |
+
|
486 |
+
sqrt_num_positions = torch_int(num_positions**0.5)
|
487 |
+
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
488 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
489 |
+
target_dtype = patch_pos_embed.dtype
|
490 |
+
patch_pos_embed = nn.functional.interpolate(
|
491 |
+
patch_pos_embed.to(torch.float32),
|
492 |
+
size=(new_height, new_width),
|
493 |
+
mode="bicubic",
|
494 |
+
align_corners=False,
|
495 |
+
).to(dtype=target_dtype)
|
496 |
+
|
497 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
498 |
+
|
499 |
+
return patch_pos_embed
|
500 |
+
|
501 |
+
def forward(self, pixel_values: Optional[torch.Tensor]) -> torch.Tensor:
|
502 |
+
if pixel_values is None:
|
503 |
+
return None
|
504 |
+
batch_size, _, height, width = pixel_values.shape
|
505 |
+
target_dtype = self.embeddings.patchify.weight.dtype
|
506 |
+
embeddings = self.embeddings(pixel_values.to(dtype=target_dtype))
|
507 |
+
# add positional encoding to each token
|
508 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
509 |
+
embeddings = self.dropout(embeddings)
|
510 |
+
return embeddings
|
511 |
+
|
512 |
+
|
513 |
+
class EmbodiedMAERGBEmbeddings(PatchEmbeddings):
|
514 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
515 |
+
super().__init__(
|
516 |
+
image_size=config.image_size,
|
517 |
+
patch_size=config.patch_size,
|
518 |
+
hidden_size=config.hidden_size,
|
519 |
+
num_channels=3,
|
520 |
+
dropout=0.0,
|
521 |
+
)
|
522 |
+
|
523 |
+
|
524 |
+
class EmbodiedMAEDepthEmbeddings(PatchEmbeddings):
|
525 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
526 |
+
super().__init__(
|
527 |
+
image_size=config.image_size,
|
528 |
+
patch_size=config.patch_size,
|
529 |
+
hidden_size=config.hidden_size,
|
530 |
+
num_channels=1,
|
531 |
+
dropout=0.0,
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
class EmbodiedMAEPointCloudEmbeddings(nn.Module):
|
536 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
537 |
+
super().__init__()
|
538 |
+
self.num_centers, self.num_knn = config.num_pc_centers, config.num_pc_knn
|
539 |
+
self.knn_embeddings = PointGroupEmbedding(3, config.hidden_size)
|
540 |
+
self.center_embeddings = nn.Sequential(
|
541 |
+
nn.Linear(3, config.hidden_size),
|
542 |
+
nn.GELU(approximate="tanh"),
|
543 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
544 |
+
)
|
545 |
+
|
546 |
+
def forward(self, point_cloud: Optional[torch.Tensor]) -> torch.Tensor:
|
547 |
+
if point_cloud is None:
|
548 |
+
return None, None, None
|
549 |
+
centers, knn_points = fps_and_knn(
|
550 |
+
point_cloud, num_centers=self.num_centers, num_knn=self.num_knn
|
551 |
+
)
|
552 |
+
normed_knn_points = knn_points - centers.unsqueeze(-2)
|
553 |
+
center_emb = self.center_embeddings(centers)
|
554 |
+
knn_emb = self.knn_embeddings(normed_knn_points)
|
555 |
+
return center_emb + knn_emb, centers, normed_knn_points
|
556 |
+
|
557 |
+
|
558 |
+
# class EmbodiedMAEModel(nn.Module):
|
559 |
+
# def __init__(self, config: EmbodiedMAEConfig):
|
560 |
+
# super().__init__()
|
561 |
+
# self.config = config
|
562 |
+
|
563 |
+
# self.dirichlet = torch.distributions.Dirichlet(torch.full((3,), config.dirichlet_alpha))
|
564 |
+
# # self.dirichlets = [
|
565 |
+
# # torch.distributions.Dirichlet(torch.full((i,), config.dirichlet_alpha))
|
566 |
+
# # for i in range(1, 3)
|
567 |
+
# # ]
|
568 |
+
|
569 |
+
# self.rgb_embeddings = EmbodiedMAERGBEmbeddings(config)
|
570 |
+
# self.depth_embeddings = EmbodiedMAEDepthEmbeddings(config)
|
571 |
+
# self.pc_embeddings = EmbodiedMAEPointCloudEmbeddings(config)
|
572 |
+
|
573 |
+
# # backbone: Dinov2Model = Dinov2Model.from_pretrained(config.backbone)
|
574 |
+
# self.encoder = Dinov2Encoder(config)
|
575 |
+
# # self.encoder.load_state_dict(backbone.encoder.state_dict())
|
576 |
+
|
577 |
+
# self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
578 |
+
|
579 |
+
# num_patches = (config.image_size // config.patch_size) ** 2
|
580 |
+
# self.embedding_sz = (
|
581 |
+
# num_patches,
|
582 |
+
# num_patches,
|
583 |
+
# config.num_pc_centers,
|
584 |
+
# ) # token size for each modality
|
585 |
+
# self.unmask_sz = config.unmask_sz # number of unmasked tokens
|
586 |
+
|
587 |
+
# # def prepare_shuffle_idx(
|
588 |
+
# # self,
|
589 |
+
# # rgb: Optional[torch.Tensor],
|
590 |
+
# # depth: Optional[torch.Tensor],
|
591 |
+
# # pc: Optional[torch.Tensor],
|
592 |
+
# # add_mask: bool = True,
|
593 |
+
# # unmask_sz: Optional[int] = None,
|
594 |
+
# # shuffle_idx: Optional[torch.Tensor] = None,
|
595 |
+
# # ):
|
596 |
+
# # """Prepare shuffle indices for the input embeddings.
|
597 |
+
|
598 |
+
# # Args:
|
599 |
+
# # rgb (Optional[torch.Tensor]):
|
600 |
+
# # RGB image from [-1, 1] range, shape (B, C, H, W).
|
601 |
+
# # depth (Optional[torch.Tensor]):
|
602 |
+
# # Depth map from [0, 2] range, shape (B, C, H, W).
|
603 |
+
# # pc (Optional[torch.Tensor]):
|
604 |
+
# # Point cloud data, shape (B, N, 3), where N is the number of points.
|
605 |
+
# # add_mask (bool, optional):
|
606 |
+
# # Whether to add a mask for masked autoencoding. Defaults to True.
|
607 |
+
# # unmask_sz (Optional[int], optional):
|
608 |
+
# # Size of the unmasked tokens. If None, it will be set to self.unmask_sz. Defaults to None.
|
609 |
+
# # shuffle_idx (Optional[torch.Tensor], optional):
|
610 |
+
# # Shuffle indices for the input embeddings. If provided, it will be used to restore the original order.
|
611 |
+
|
612 |
+
# # Returns:
|
613 |
+
# # _type_: _description_
|
614 |
+
# # """
|
615 |
+
# # # provide at least one modality
|
616 |
+
# # for modal in (rgb, depth, pc):
|
617 |
+
# # if modal is not None:
|
618 |
+
# # b = modal.shape[0]
|
619 |
+
# # device = modal.device
|
620 |
+
# # break
|
621 |
+
# # else:
|
622 |
+
# # raise ValueError("provide at least one modality")
|
623 |
+
|
624 |
+
# # if add_mask:
|
625 |
+
# # unmask_sz = self.unmask_sz if unmask_sz is None else unmask_sz
|
626 |
+
# # if shuffle_idx is not None:
|
627 |
+
# # restore_idx = torch.argsort(shuffle_idx, 1)
|
628 |
+
# # else:
|
629 |
+
# # mask = [1.0 if t is not None else 0.0 for t in [rgb, depth, pc]]
|
630 |
+
# # # multi-modal shuffle
|
631 |
+
# # if sum(mask) > 1:
|
632 |
+
# # p = self.dirichlet.sample((b,)).numpy()
|
633 |
+
# # p = p * np.array(mask)[None]
|
634 |
+
# # p = p / p.sum(-1, keepdims=True)
|
635 |
+
# # shuffle_idx = get_mm_shuffle_indices(p, self.embedding_sz, unmask_sz)
|
636 |
+
# # # uni-modal shuffle
|
637 |
+
# # else:
|
638 |
+
# # shuffle_idx = get_shuffle_indices(self.embedding_sz[mask.index(1.0)])
|
639 |
+
# # restore_idx = np.argsort(shuffle_idx, 1)
|
640 |
+
# # shuffle_idx = torch.tensor(shuffle_idx, device=device)
|
641 |
+
# # restore_idx = torch.tensor(restore_idx, device=device)
|
642 |
+
# # else:
|
643 |
+
# # # the missing modality is regarded as masked
|
644 |
+
# # unmask_parts, mask_parts = [], []
|
645 |
+
# # cumsum_emb_sz = np.cumsum(self.embedding_sz)
|
646 |
+
# # for i, modal in enumerate([rgb, depth, pc]):
|
647 |
+
# # indices = torch.arange(
|
648 |
+
# # cumsum_emb_sz[i - 1] if i > 0 else 0,
|
649 |
+
# # cumsum_emb_sz[i],
|
650 |
+
# # device=device,
|
651 |
+
# # )
|
652 |
+
# # if modal is not None:
|
653 |
+
# # unmask_parts.append(indices)
|
654 |
+
# # else:
|
655 |
+
# # mask_parts.append(indices)
|
656 |
+
# # shuffle_idx = torch.cat(unmask_parts + mask_parts, dim=0)[None].repeat(b, 1)
|
657 |
+
# # restore_idx = torch.argsort(shuffle_idx, 1)
|
658 |
+
# # unmask_sz = sum([len(part) for part in unmask_parts])
|
659 |
+
|
660 |
+
# # return shuffle_idx, restore_idx, unmask_sz
|
661 |
+
|
662 |
+
# def get_input_embeddings(
|
663 |
+
# self,
|
664 |
+
# rgb: Optional[torch.Tensor],
|
665 |
+
# depth: Optional[torch.Tensor],
|
666 |
+
# pc: Optional[torch.Tensor],
|
667 |
+
# add_mask: bool = True,
|
668 |
+
# unmask_sz: Optional[int] = None,
|
669 |
+
# forward_pc: bool = True,
|
670 |
+
# shuffle_idx: Optional[torch.Tensor] = None,
|
671 |
+
# ):
|
672 |
+
# # provide at least one modality
|
673 |
+
# assert any([rgb is not None, depth is not None, pc is not None])
|
674 |
+
|
675 |
+
# # embeddings
|
676 |
+
# rgb_emb = self.rgb_embeddings(rgb)
|
677 |
+
# depth_emb = self.depth_embeddings(depth)
|
678 |
+
# pc_emb, pc_centers, pc_knn = self.pc_embeddings(pc)
|
679 |
+
# if not forward_pc:
|
680 |
+
# pc = None
|
681 |
+
# pc_emb = None
|
682 |
+
|
683 |
+
# # concat embeddings
|
684 |
+
# all_emb = concat_sequence_with_dummy([rgb_emb, depth_emb, pc_emb], self.embedding_sz)
|
685 |
+
|
686 |
+
# # prepare shuffle indices
|
687 |
+
# shuffle_idx, restore_idx, unmask_sz = prepare_shuffle_idx(
|
688 |
+
# has_rgb=rgb is not None,
|
689 |
+
# has_depth=depth is not None,
|
690 |
+
# has_pc=pc is not None,
|
691 |
+
# batch_size=all_emb.shape[0],
|
692 |
+
# unmask_sz=self.unmask_sz if unmask_sz is None else unmask_sz,
|
693 |
+
# dirichlet=self.dirichlet,
|
694 |
+
# embedding_sz=self.embedding_sz,
|
695 |
+
# add_mask=add_mask,
|
696 |
+
# shuffle_idx=shuffle_idx,
|
697 |
+
# device=all_emb.device,
|
698 |
+
# )
|
699 |
+
|
700 |
+
# # get unmasked embeddings
|
701 |
+
# unmasked_emb = torch.gather(
|
702 |
+
# all_emb, 1, shuffle_idx[:, :unmask_sz, None].repeat(1, 1, all_emb.shape[-1])
|
703 |
+
# )
|
704 |
+
|
705 |
+
# return EncoderModelOutput(
|
706 |
+
# embedding=unmasked_emb,
|
707 |
+
# pc_centers=pc_centers,
|
708 |
+
# pc_knn=pc_knn,
|
709 |
+
# shuffle_idx=shuffle_idx,
|
710 |
+
# restore_idx=restore_idx,
|
711 |
+
# add_mask=add_mask,
|
712 |
+
# unmask_sz=unmask_sz,
|
713 |
+
# )
|
714 |
+
|
715 |
+
# # def get_input_embeddings_with_manual_mask(
|
716 |
+
# # self,
|
717 |
+
# # rgb: Optional[torch.Tensor],
|
718 |
+
# # depth: Optional[torch.Tensor],
|
719 |
+
# # pc: Optional[torch.Tensor],
|
720 |
+
# # shuffle_idx: torch.Tensor,
|
721 |
+
# # unmask_sz: int,
|
722 |
+
# # forward_pc: bool = True,
|
723 |
+
# # ):
|
724 |
+
# # # provide at least one modality
|
725 |
+
# # assert any([rgb is not None, depth is not None, pc is not None])
|
726 |
+
|
727 |
+
# # # embeddings
|
728 |
+
# # rgb_emb = self.rgb_embeddings(rgb)
|
729 |
+
# # depth_emb = self.depth_embeddings(depth)
|
730 |
+
# # pc_emb, pc_centers, pc_knn = self.pc_embeddings(pc)
|
731 |
+
# # if not forward_pc:
|
732 |
+
# # pc = None
|
733 |
+
# # pc_emb = None
|
734 |
+
|
735 |
+
# # # concat embeddings
|
736 |
+
# # all_emb = concat_sequence_with_dummy([rgb_emb, depth_emb, pc_emb], self.embedding_sz)
|
737 |
+
|
738 |
+
# # shuffle_idx = shuffle_idx.to(all_emb.device)
|
739 |
+
# # restore_idx = torch.argsort(shuffle_idx, 1)
|
740 |
+
|
741 |
+
# # unmasked_emb = torch.gather(
|
742 |
+
# # all_emb, 1, shuffle_idx[:, :unmask_sz, None].repeat(1, 1, all_emb.shape[-1])
|
743 |
+
# # )
|
744 |
+
|
745 |
+
# # return EncoderModelOutput(
|
746 |
+
# # embedding=unmasked_emb,
|
747 |
+
# # pc_centers=pc_centers,
|
748 |
+
# # pc_knn=pc_knn,
|
749 |
+
# # shuffle_idx=shuffle_idx,
|
750 |
+
# # restore_idx=restore_idx,
|
751 |
+
# # add_mask=None,
|
752 |
+
# # unmask_sz=unmask_sz,
|
753 |
+
# # )
|
754 |
+
|
755 |
+
# def get_last_hidden_states(
|
756 |
+
# self,
|
757 |
+
# embedding_output: EncoderModelOutput,
|
758 |
+
# output_attentions: bool = False,
|
759 |
+
# output_hidden_states: bool = False,
|
760 |
+
# ):
|
761 |
+
# embedding = embedding_output.embedding
|
762 |
+
|
763 |
+
# encoder_outputs = self.encoder(
|
764 |
+
# embedding,
|
765 |
+
# output_attentions=output_attentions,
|
766 |
+
# output_hidden_states=output_hidden_states,
|
767 |
+
# )
|
768 |
+
# sequence_output = encoder_outputs[0]
|
769 |
+
# sequence_output = self.layernorm(sequence_output)
|
770 |
+
|
771 |
+
# embedding_output.last_hidden_states = sequence_output
|
772 |
+
# embedding_output.hidden_states = encoder_outputs.hidden_states
|
773 |
+
# embedding_output.attentions = encoder_outputs.attentions
|
774 |
+
|
775 |
+
# return embedding_output
|
776 |
+
|
777 |
+
# def get_decoder_input(self, encoder_output: EncoderModelOutput):
|
778 |
+
# unmasked_emb = encoder_output.last_hidden_states
|
779 |
+
# unmask_sz = encoder_output.unmask_sz
|
780 |
+
|
781 |
+
# # if encoder_output.add_mask:
|
782 |
+
# masked_emb = torch.zeros(
|
783 |
+
# (
|
784 |
+
# unmasked_emb.shape[0],
|
785 |
+
# sum(self.embedding_sz) - unmask_sz,
|
786 |
+
# unmasked_emb.shape[-1],
|
787 |
+
# ),
|
788 |
+
# device=unmasked_emb.device,
|
789 |
+
# dtype=unmasked_emb.dtype,
|
790 |
+
# )
|
791 |
+
# all_emb = torch.cat([unmasked_emb, masked_emb], dim=1)
|
792 |
+
# all_emb = torch.gather(
|
793 |
+
# all_emb,
|
794 |
+
# 1,
|
795 |
+
# encoder_output.restore_idx.unsqueeze(-1).repeat(1, 1, all_emb.shape[-1]),
|
796 |
+
# )
|
797 |
+
# # else:
|
798 |
+
# # all_emb = unmasked_emb
|
799 |
+
|
800 |
+
# rgb_emb, depth_emb, pc_emb = torch.split(all_emb, self.embedding_sz, dim=1)
|
801 |
+
|
802 |
+
# return DecoderInput(
|
803 |
+
# rgb_embedding=rgb_emb,
|
804 |
+
# depth_embedding=depth_emb,
|
805 |
+
# pc_embedding=pc_emb,
|
806 |
+
# unmasked_emb=unmasked_emb,
|
807 |
+
# shuffle_idx=encoder_output.shuffle_idx,
|
808 |
+
# pc_centers=encoder_output.pc_centers,
|
809 |
+
# pc_knn=encoder_output.pc_knn,
|
810 |
+
# add_mask=encoder_output.add_mask,
|
811 |
+
# unmask_sz=unmask_sz,
|
812 |
+
# )
|
813 |
+
|
814 |
+
# def forward(
|
815 |
+
# self,
|
816 |
+
# rgb: Optional[torch.Tensor],
|
817 |
+
# depth: Optional[torch.Tensor],
|
818 |
+
# pc: Optional[torch.Tensor],
|
819 |
+
# add_mask: bool = True,
|
820 |
+
# unmask_sz: Optional[int] = None,
|
821 |
+
# output_attentions: bool = False,
|
822 |
+
# output_hidden_states: bool = False,
|
823 |
+
# forward_pc: bool = True,
|
824 |
+
# ):
|
825 |
+
# embedding_output = self.get_input_embeddings(
|
826 |
+
# rgb, depth, pc, add_mask, unmask_sz, forward_pc
|
827 |
+
# )
|
828 |
+
# return self.get_last_hidden_states(
|
829 |
+
# embedding_output, output_attentions, output_hidden_states
|
830 |
+
# )
|
831 |
+
|
832 |
+
|
833 |
+
class EmbodiedMAEDecoder(nn.Module):
|
834 |
+
def __init__(self, config: EmbodiedMAEConfig):
|
835 |
+
super().__init__()
|
836 |
+
image_size = config.image_size
|
837 |
+
patch_size = config.patch_size
|
838 |
+
self.config = config
|
839 |
+
|
840 |
+
pos_emb = get_2d_sincos_pos_embed(config.decoder_hidden_size, image_size // patch_size)
|
841 |
+
self.rgb_pos_embed = nn.Parameter(torch.tensor(pos_emb)[None])
|
842 |
+
self.depth_pos_embed = nn.Parameter(torch.tensor(pos_emb)[None])
|
843 |
+
self.pc_pos_embed = nn.Sequential(
|
844 |
+
nn.Linear(3, config.decoder_hidden_size),
|
845 |
+
nn.GELU(approximate="tanh"),
|
846 |
+
nn.Linear(config.decoder_hidden_size, config.decoder_hidden_size),
|
847 |
+
)
|
848 |
+
|
849 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
850 |
+
self.embedding_sz = (num_patches, num_patches, config.num_pc_centers)
|
851 |
+
self.unmask_sz = config.unmask_sz
|
852 |
+
self.context_pos_emb = nn.Parameter(
|
853 |
+
torch.randn(sum(self.embedding_sz), config.decoder_hidden_size)
|
854 |
+
)
|
855 |
+
nn.init.trunc_normal_(self.context_pos_emb, std=config.initializer_range)
|
856 |
+
|
857 |
+
self.rgb_query_proj = nn.Linear(config.hidden_size, config.decoder_hidden_size)
|
858 |
+
self.depth_query_proj = nn.Linear(config.hidden_size, config.decoder_hidden_size)
|
859 |
+
self.pc_query_proj = nn.Linear(config.hidden_size, config.decoder_hidden_size)
|
860 |
+
self.rgb_query_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
861 |
+
self.depth_query_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
862 |
+
self.pc_query_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
863 |
+
|
864 |
+
self.context_proj = nn.Linear(config.hidden_size, config.decoder_hidden_size)
|
865 |
+
self.context_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
866 |
+
|
867 |
+
self.rgb_cross_attn = CrossAttention(config.decoder_hidden_size)
|
868 |
+
self.depth_cross_attn = CrossAttention(config.decoder_hidden_size)
|
869 |
+
self.pc_cross_attn = CrossAttention(config.decoder_hidden_size)
|
870 |
+
|
871 |
+
dec_config = deepcopy(config)
|
872 |
+
dec_config.hidden_size = config.decoder_hidden_size
|
873 |
+
dec_config.num_hidden_layers = config.decoder_num_hidden_layers
|
874 |
+
dec_config.num_attention_heads = config.decoder_num_attention_heads
|
875 |
+
|
876 |
+
self.rgb_layer = nn.ModuleList(
|
877 |
+
[Dinov2Layer(dec_config) for _ in range(dec_config.num_hidden_layers)]
|
878 |
+
)
|
879 |
+
self.depth_layer = nn.ModuleList(
|
880 |
+
[Dinov2Layer(dec_config) for _ in range(dec_config.num_hidden_layers)]
|
881 |
+
)
|
882 |
+
self.pc_layer = nn.ModuleList(
|
883 |
+
[Dinov2Layer(dec_config) for _ in range(dec_config.num_hidden_layers)]
|
884 |
+
)
|
885 |
+
|
886 |
+
self.rgb_out_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
887 |
+
self.depth_out_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
888 |
+
self.pc_out_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps)
|
889 |
+
|
890 |
+
self.rgb_out_proj = nn.Linear(config.decoder_hidden_size, config.patch_size**2 * 3)
|
891 |
+
self.depth_out_proj = nn.Linear(config.decoder_hidden_size, config.patch_size**2)
|
892 |
+
self.pc_out_proj = nn.Linear(config.decoder_hidden_size, config.num_pc_knn * 3)
|
893 |
+
|
894 |
+
self.norm_pix_loss = config.norm_pix_loss
|
895 |
+
|
896 |
+
def get_decoder_input(self, encoder_output: EncoderModelOutput):
|
897 |
+
"""Convert the encoder output to decoder input."""
|
898 |
+
unmasked_emb = encoder_output.last_hidden_states
|
899 |
+
unmask_sz = encoder_output.unmask_sz
|
900 |
+
|
901 |
+
masked_emb = torch.zeros(
|
902 |
+
(
|
903 |
+
unmasked_emb.shape[0],
|
904 |
+
sum(self.embedding_sz) - unmask_sz,
|
905 |
+
unmasked_emb.shape[-1],
|
906 |
+
),
|
907 |
+
device=unmasked_emb.device,
|
908 |
+
dtype=unmasked_emb.dtype,
|
909 |
+
)
|
910 |
+
all_emb = torch.cat([unmasked_emb, masked_emb], dim=1)
|
911 |
+
all_emb = torch.gather(
|
912 |
+
all_emb,
|
913 |
+
1,
|
914 |
+
encoder_output.restore_idx.unsqueeze(-1).repeat(1, 1, all_emb.shape[-1]),
|
915 |
+
)
|
916 |
+
rgb_emb, depth_emb, pc_emb = torch.split(all_emb, self.embedding_sz, dim=1)
|
917 |
+
|
918 |
+
return DecoderInput(
|
919 |
+
rgb_embedding=rgb_emb,
|
920 |
+
depth_embedding=depth_emb,
|
921 |
+
pc_embedding=pc_emb,
|
922 |
+
unmasked_emb=unmasked_emb,
|
923 |
+
shuffle_idx=encoder_output.shuffle_idx,
|
924 |
+
pc_centers=encoder_output.pc_centers,
|
925 |
+
pc_knn=encoder_output.pc_knn,
|
926 |
+
add_mask=encoder_output.add_mask,
|
927 |
+
unmask_sz=unmask_sz,
|
928 |
+
)
|
929 |
+
|
930 |
+
def forward(self, decoder_input: DecoderInput):
|
931 |
+
unmask_sz = decoder_input.unmask_sz if decoder_input.unmask_sz else self.unmask_sz
|
932 |
+
rgb_query = self.rgb_query_proj(decoder_input.rgb_embedding)
|
933 |
+
depth_query = self.depth_query_proj(decoder_input.depth_embedding)
|
934 |
+
pc_query = self.pc_query_proj(decoder_input.pc_embedding)
|
935 |
+
rgb_query = self.rgb_query_norm(rgb_query + self.rgb_pos_embed)
|
936 |
+
depth_query = self.depth_query_norm(depth_query + self.depth_pos_embed)
|
937 |
+
if decoder_input.pc_centers is not None:
|
938 |
+
pc_pos_embed = self.pc_pos_embed(decoder_input.pc_centers)
|
939 |
+
else:
|
940 |
+
pc_pos_embed = 0
|
941 |
+
pc_query = self.pc_query_norm(pc_query + pc_pos_embed)
|
942 |
+
|
943 |
+
context = self.context_proj(decoder_input.unmasked_emb)
|
944 |
+
shuffle_idx = decoder_input.shuffle_idx[:, :unmask_sz]
|
945 |
+
context_pos_emb = self.context_pos_emb[shuffle_idx]
|
946 |
+
context = self.context_norm(context + context_pos_emb)
|
947 |
+
|
948 |
+
rgb_emb = self.rgb_cross_attn(rgb_query, context)
|
949 |
+
depth_emb = self.depth_cross_attn(depth_query, context)
|
950 |
+
pc_emb = self.pc_cross_attn(pc_query, context)
|
951 |
+
|
952 |
+
for layers in self.rgb_layer:
|
953 |
+
rgb_emb = layers(rgb_emb)[0]
|
954 |
+
for layers in self.depth_layer:
|
955 |
+
depth_emb = layers(depth_emb)[0]
|
956 |
+
for layers in self.pc_layer:
|
957 |
+
pc_emb = layers(pc_emb)[0]
|
958 |
+
|
959 |
+
rgb_emb = self.rgb_out_norm(rgb_emb)
|
960 |
+
depth_emb = self.depth_out_norm(depth_emb)
|
961 |
+
pc_emb = self.pc_out_norm(pc_emb)
|
962 |
+
|
963 |
+
rgb_out = self.rgb_out_proj(rgb_emb)
|
964 |
+
depth_out = self.depth_out_proj(depth_emb)
|
965 |
+
pc_out = self.pc_out_proj(pc_emb)
|
966 |
+
|
967 |
+
return rgb_out, depth_out, pc_out
|
968 |
+
|
969 |
+
def get_loss(self, decoder_input: DecoderInput, rgb, depth, pc):
|
970 |
+
unmask_sz = decoder_input.unmask_sz
|
971 |
+
b = rgb.shape[0]
|
972 |
+
rgb_out, depth_out, pc_out = self(decoder_input)
|
973 |
+
|
974 |
+
target_rgb, target_depth = (
|
975 |
+
patchify(rgb, self.config.patch_size, 3),
|
976 |
+
patchify(depth, self.config.patch_size, 1),
|
977 |
+
)
|
978 |
+
target_pc = decoder_input.pc_knn * 10.0 # meters to centimeters
|
979 |
+
|
980 |
+
if self.norm_pix_loss:
|
981 |
+
rgb_mean, rgb_std = (
|
982 |
+
target_rgb.mean(-1, keepdim=True),
|
983 |
+
target_rgb.std(-1, keepdim=True),
|
984 |
+
)
|
985 |
+
depth_mean, depth_std = (
|
986 |
+
target_depth.mean(-1, keepdim=True),
|
987 |
+
target_depth.std(-1, keepdim=True),
|
988 |
+
)
|
989 |
+
else:
|
990 |
+
rgb_mean, rgb_std = 0.0, 1.0
|
991 |
+
depth_mean, depth_std = 0.0, 1.0
|
992 |
+
|
993 |
+
target_rgb = (target_rgb - rgb_mean) / (rgb_std + 1e-8)
|
994 |
+
target_depth = (target_depth - depth_mean) / (depth_std + 1e-8)
|
995 |
+
|
996 |
+
mask = torch.ones((b, sum(self.embedding_sz)), device=rgb.device)
|
997 |
+
mask[
|
998 |
+
torch.arange(b, device=rgb.device)[:, None],
|
999 |
+
decoder_input.shuffle_idx[:, :unmask_sz],
|
1000 |
+
] = 0
|
1001 |
+
rgb_mask, depth_mask, pc_mask = torch.split(mask, self.embedding_sz, dim=1)
|
1002 |
+
|
1003 |
+
rgb_loss = ((rgb_out - target_rgb).pow(2).mean(-1) * rgb_mask).sum() / rgb_mask.sum()
|
1004 |
+
depth_loss = (
|
1005 |
+
(depth_out - target_depth).abs().mean(-1) * depth_mask
|
1006 |
+
).sum() / depth_mask.sum()
|
1007 |
+
|
1008 |
+
pred_pc = einops.rearrange(pc_out[pc_mask.bool()], "b (k n) -> b k n", n=3)
|
1009 |
+
target_pc = target_pc[pc_mask.bool()]
|
1010 |
+
pc_loss = chamfer_distance(pred_pc.float(), target_pc.float(), norm=1)[0]
|
1011 |
+
|
1012 |
+
return rgb_loss, depth_loss, pc_loss
|
1013 |
+
|
1014 |
+
@torch.no_grad()
|
1015 |
+
def visualize(
|
1016 |
+
self, decoder_input: DecoderInput, rgb: torch.Tensor, depth: torch.Tensor, pc: torch.Tensor
|
1017 |
+
):
|
1018 |
+
"""Visualize the predictions of the decoder.
|
1019 |
+
|
1020 |
+
Args:
|
1021 |
+
decoder_input (DecoderInput):
|
1022 |
+
`decoder_input` from `get_decoder_input`.
|
1023 |
+
rgb (torch.Tensor):
|
1024 |
+
RGB image with shape (B, 3, H, W) in [-1, 1] range.
|
1025 |
+
depth (torch.Tensor):
|
1026 |
+
Depth map with shape (B, 1, H, W) in [0, inf] range. Unit is meters.
|
1027 |
+
pc (torch.Tensor):
|
1028 |
+
Point cloud with shape (B, N, 3), where N=8192 is the number of points. Unit is meters.
|
1029 |
+
|
1030 |
+
Returns:
|
1031 |
+
_type_: _description_
|
1032 |
+
"""
|
1033 |
+
rgb_out, depth_out, pc_out = self(decoder_input)
|
1034 |
+
pc_centers = decoder_input.pc_centers
|
1035 |
+
pc_out = einops.rearrange(pc_out, "... (k n) -> ... k n", n=3)
|
1036 |
+
plt_pc = pc_out / 10.0 + pc_centers.unsqueeze(-2)
|
1037 |
+
b = rgb_out.shape[0]
|
1038 |
+
unmask_sz = decoder_input.unmask_sz
|
1039 |
+
|
1040 |
+
target_rgb, target_depth = (
|
1041 |
+
patchify(rgb, self.config.patch_size, 3),
|
1042 |
+
patchify(depth, self.config.patch_size, 1),
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
if self.norm_pix_loss:
|
1046 |
+
rgb_mean, rgb_std = (
|
1047 |
+
target_rgb.mean(-1, keepdim=True),
|
1048 |
+
target_rgb.std(-1, keepdim=True),
|
1049 |
+
)
|
1050 |
+
depth_mean, depth_std = (
|
1051 |
+
target_depth.mean(-1, keepdim=True),
|
1052 |
+
target_depth.std(-1, keepdim=True),
|
1053 |
+
)
|
1054 |
+
else:
|
1055 |
+
rgb_mean, rgb_std = 0.0, 1.0
|
1056 |
+
depth_mean, depth_std = 0.0, 1.0
|
1057 |
+
|
1058 |
+
pred_rgb = rgb_out * (rgb_std + 1e-8) + rgb_mean
|
1059 |
+
pred_depth = depth_out * (depth_std + 1e-8) + depth_mean
|
1060 |
+
|
1061 |
+
mask = torch.ones((b, sum(self.embedding_sz)), device=rgb.device)
|
1062 |
+
if decoder_input.add_mask:
|
1063 |
+
mask[
|
1064 |
+
torch.arange(b, device=rgb.device)[:, None],
|
1065 |
+
decoder_input.shuffle_idx[:, :unmask_sz],
|
1066 |
+
] = 0
|
1067 |
+
rgb_mask, depth_mask, _ = torch.split(mask, self.embedding_sz, dim=1)
|
1068 |
+
|
1069 |
+
masked_rgb = torch.ones_like(target_rgb) - 2.0
|
1070 |
+
masked_rgb[~rgb_mask.bool()] = target_rgb[~rgb_mask.bool()].to(masked_rgb.dtype)
|
1071 |
+
masked_rgb = unpatchify(
|
1072 |
+
masked_rgb,
|
1073 |
+
self.config.patch_size,
|
1074 |
+
3,
|
1075 |
+
(self.config.image_size, self.config.image_size),
|
1076 |
+
)
|
1077 |
+
pred_rgb[~rgb_mask.bool()] = target_rgb[~rgb_mask.bool()].to(pred_rgb.dtype)
|
1078 |
+
pred_rgb = unpatchify(
|
1079 |
+
pred_rgb,
|
1080 |
+
self.config.patch_size,
|
1081 |
+
3,
|
1082 |
+
(self.config.image_size, self.config.image_size),
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
masked_depth = torch.zeros_like(pred_depth)
|
1086 |
+
masked_depth[~depth_mask.bool()] = target_depth[~depth_mask.bool()].to(masked_depth.dtype)
|
1087 |
+
masked_depth = unpatchify(
|
1088 |
+
masked_depth,
|
1089 |
+
self.config.patch_size,
|
1090 |
+
1,
|
1091 |
+
(self.config.image_size, self.config.image_size),
|
1092 |
+
)
|
1093 |
+
pred_depth[~depth_mask.bool()] = target_depth[~depth_mask.bool()].to(pred_depth.dtype)
|
1094 |
+
pred_depth = unpatchify(
|
1095 |
+
pred_depth,
|
1096 |
+
self.config.patch_size,
|
1097 |
+
1,
|
1098 |
+
(self.config.image_size, self.config.image_size),
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
plt_rgb = (
|
1102 |
+
torch.cat([rgb.float(), masked_rgb.float(), pred_rgb.float()], 2) * 0.5 + 0.5
|
1103 |
+
).clip(0, 1)
|
1104 |
+
plt_depth = (
|
1105 |
+
torch.cat([depth.float(), masked_depth.float(), pred_depth.float()], 2) / 2.0
|
1106 |
+
).clip(0, 1)
|
1107 |
+
|
1108 |
+
return (
|
1109 |
+
plt_rgb.permute(0, 2, 3, 1).cpu(),
|
1110 |
+
plt_depth.permute(0, 2, 3, 1).cpu(),
|
1111 |
+
plt_pc.cpu(),
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
# @torch.no_grad()
|
1115 |
+
# def visualize_pc(self, decoder_input: DecoderInput, rgb, depth, pc):
|
1116 |
+
# rgb_out, depth_out, pc_out = self(decoder_input)
|
1117 |
+
# pc_centers = decoder_input.pc_centers
|
1118 |
+
# pc_out = einops.rearrange(pc_out, "... (k n) -> ... k n", n=3)
|
1119 |
+
# plt_pc = pc_out / 10.0 + pc_centers.unsqueeze(-2)
|
1120 |
+
|
1121 |
+
# b = rgb_out.shape[0]
|
1122 |
+
|
1123 |
+
# target_rgb, target_depth = (
|
1124 |
+
# patchify(rgb, self.config.patch_size, 3),
|
1125 |
+
# patchify(depth, self.config.patch_size, 1),
|
1126 |
+
# )
|
1127 |
+
|
1128 |
+
# if self.norm_pix_loss:
|
1129 |
+
# rgb_mean, rgb_std = (
|
1130 |
+
# target_rgb.mean(-1, keepdim=True),
|
1131 |
+
# target_rgb.std(-1, keepdim=True),
|
1132 |
+
# )
|
1133 |
+
# depth_mean, depth_std = (
|
1134 |
+
# target_depth.mean(-1, keepdim=True),
|
1135 |
+
# target_depth.std(-1, keepdim=True),
|
1136 |
+
# )
|
1137 |
+
# else:
|
1138 |
+
# rgb_mean, rgb_std = 0.0, 1.0
|
1139 |
+
# depth_mean, depth_std = 0.0, 1.0
|
1140 |
+
|
1141 |
+
# pred_rgb = rgb_out * (rgb_std + 1e-8) + rgb_mean
|
1142 |
+
# pred_depth = depth_out * (depth_std + 1e-8) + depth_mean
|
1143 |
+
|
1144 |
+
# mask = torch.ones((b, sum(self.embedding_sz)), device=rgb.device)
|
1145 |
+
# if decoder_input.add_mask:
|
1146 |
+
# mask[
|
1147 |
+
# torch.arange(b, device=rgb.device)[:, None],
|
1148 |
+
# decoder_input.shuffle_idx[:, : self.unmask_sz],
|
1149 |
+
# ] = 0
|
1150 |
+
# rgb_mask, depth_mask, _ = torch.split(mask, self.embedding_sz, dim=1)
|
1151 |
+
|
1152 |
+
# masked_rgb = torch.ones_like(target_rgb) - 2.0
|
1153 |
+
# masked_rgb[~rgb_mask.bool()] = target_rgb[~rgb_mask.bool()].to(masked_rgb.dtype)
|
1154 |
+
# masked_rgb = unpatchify(
|
1155 |
+
# masked_rgb,
|
1156 |
+
# self.config.patch_size,
|
1157 |
+
# 3,
|
1158 |
+
# (self.config.image_size, self.config.image_size),
|
1159 |
+
# )
|
1160 |
+
# pred_rgb[~rgb_mask.bool()] = target_rgb[~rgb_mask.bool()].to(pred_rgb.dtype)
|
1161 |
+
# pred_rgb = unpatchify(
|
1162 |
+
# pred_rgb,
|
1163 |
+
# self.config.patch_size,
|
1164 |
+
# 3,
|
1165 |
+
# (self.config.image_size, self.config.image_size),
|
1166 |
+
# )
|
1167 |
+
|
1168 |
+
# masked_depth = torch.zeros_like(pred_depth)
|
1169 |
+
# masked_depth[~depth_mask.bool()] = target_depth[~depth_mask.bool()].to(masked_depth.dtype)
|
1170 |
+
# masked_depth = unpatchify(
|
1171 |
+
# masked_depth,
|
1172 |
+
# self.config.patch_size,
|
1173 |
+
# 1,
|
1174 |
+
# (self.config.image_size, self.config.image_size),
|
1175 |
+
# )
|
1176 |
+
# pred_depth[~depth_mask.bool()] = target_depth[~depth_mask.bool()].to(pred_depth.dtype)
|
1177 |
+
# pred_depth = unpatchify(
|
1178 |
+
# pred_depth,
|
1179 |
+
# self.config.patch_size,
|
1180 |
+
# 1,
|
1181 |
+
# (self.config.image_size, self.config.image_size),
|
1182 |
+
# )
|
1183 |
+
|
1184 |
+
# plt_rgb = (
|
1185 |
+
# torch.cat([rgb.float(), masked_rgb.float(), pred_rgb.float()], 2) * 0.5 + 0.5
|
1186 |
+
# ).clip(0, 1)
|
1187 |
+
# plt_depth = (
|
1188 |
+
# torch.cat([depth.float(), masked_depth.float(), pred_depth.float()], 2) / 2.0
|
1189 |
+
# ).clip(0, 1)
|
1190 |
+
|
1191 |
+
# return (
|
1192 |
+
# plt_rgb.permute(0, 2, 3, 1).cpu(),
|
1193 |
+
# plt_depth.permute(0, 2, 3, 1).cpu(),
|
1194 |
+
# plt_pc.cpu(),
|
1195 |
+
# )
|