--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # rag-topic-model This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("aaa961/rag-topic-model") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 6 * Number of training documents: 168
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | to - my - klarna - for - the | 12 | -1_to_my_klarna_for | | 0 | klarna - my - declined - in - for | 62 | 0_klarna_my_declined_in | | 1 | my - details - klarna - and - call | 34 | 1_my_details_klarna_and | | 2 | the - payment - for - to - pay | 24 | 2_the_payment_for_to | | 3 | the - store - it - for - ago | 19 | 3_the_store_it_for | | 4 | the - ago - sneakers - and - shoes | 17 | 4_the_ago_sneakers_and |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: auto * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.3.0+4.g1dfc98e16a * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.1.1 * Transformers: 4.42.2 * Numba: 0.60.0 * Plotly: 6.1.2 * Python: 3.9.22