File size: 3,733 Bytes
da86678 5ff260f 51a1c2e 5ff260f 51a1c2e 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f e89de90 5ff260f da86678 5ff260f da86678 5ff260f e89de90 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f da86678 5ff260f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
tags:
- sentence-transformers
- text-retrieval
- sentence-similarity
- feature-extraction
- semantic-search
- amharic
- text-embedding-inference
- transformers
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: mit
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer
results:
- task:
type: triplet
name: Triplet
dataset:
name: TestTripletEvaluator
type: TestTripletEvaluator
metrics:
- type: cosine_accuracy
value: 0.875
name: Cosine Accuracy
---
# SentenceTransformer Fine-Tuned for Amharic Retrieval
This model is a [sentence-transformers](https://www.sbert.net) model finetuned on Amharic QA triplets. It maps sentences and paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
- **Model Type:** Sentence Transformer
- **Base Model:** `sentence-transformers/paraphrase-xlm-r-multilingual-v1`
- **Training Task:** Triplet loss with Matryoshka loss
- **Language:** Amharic
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
## Training Overview
- **Training Data:** Custom Amharic QA triplets (with positive and negative examples)
- **Training Strategy:**
The model was finetuned using a combination of triplet loss and a Matryoshka loss, with evaluation performed using a `TripletEvaluator`.
- **Hyperparameters:**
- Epochs: 3
- Batch Size: 16
- Learning Rate: 1e-6
- Warmup Ratio: 0.08
- Weight Decay: 0.05
## Evaluation
The model was evaluated on a held-out test set using cosine similarity as the metric:
| Metric | Value |
|---------------------|--------|
| **Cosine Accuracy** | 0.875 |
## Usage
To use the model in your own project:
1. **Install Sentence Transformers:**
```bash
pip install -U sentence-transformers
```
2. **Load the Model:**
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("abdulmunimjemal/xlm-r-retrieval-am-v5")
sentences = [
"α°αα αα α ααα΅ ααα αα?",
"α°αα α°αα«α ααα α ααα’" ,
"α₯α αα³ α₯ααα« α ααα’" ,
"α£αα αα α ααα΅ ααα αα?",
"α α¨α α αα΅α ααͺα« α«α ααα’"
]
embeddings = model.encode(sentences)
print(embeddings.shape) # Expected output: (5, 768)
```
3. **Compute Similarity:**
```python
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(embeddings, embeddings)
print(similarities.shape) # Expected output: (5, 5)
```
## Model Architecture
Below is an outline of the model architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True, ...})
)
```
## Training Environment
- **Python:** 3.11.11
- **Sentence Transformers:** 3.3.1
- **Transformers:** 4.47.1
- **PyTorch:** 2.5.1+cu124
- **Accelerate:** 1.2.1
- **Datasets:** 3.2.0
- **Tokenizers:** 0.21.0
## Citation
If you use this model in your research, please cite it appropriately.
```bibtex
@misc{your_model,
title = {SentenceTransformer Fine-Tuned for Amharic Retrieval},
author = {Abdulmunim J. Jemal},
year = {2025},
howpublished = {Hugging Face Model Hub, \url{https://huggingface.co/abdulmunimjemal/xlm-r-retrieval-am-v1}}
}
``` |