Commit
·
79bb584
1
Parent(s):
b512b4e
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-3.0
|
| 3 |
+
tags:
|
| 4 |
+
- MosaicML
|
| 5 |
+
- AWQ
|
| 6 |
+
inference: false
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# MPT-30B-Instruct (4-bit 128g AWQ Quantized)
|
| 10 |
+
[MPT-30B-Instruct](https://huggingface.co/mosaicml/mpt-30b-instruct) is a model for short-form instruction following.
|
| 11 |
+
|
| 12 |
+
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
|
| 13 |
+
|
| 14 |
+
## Model Date
|
| 15 |
+
|
| 16 |
+
July 5, 2023
|
| 17 |
+
|
| 18 |
+
## Model License
|
| 19 |
+
|
| 20 |
+
Please refer to original MPT model license ([link](https://huggingface.co/mosaicml/mpt-30b-instruct)).
|
| 21 |
+
|
| 22 |
+
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
|
| 23 |
+
|
| 24 |
+
## CUDA Version
|
| 25 |
+
|
| 26 |
+
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 80 or higher.
|
| 27 |
+
|
| 28 |
+
For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.
|
| 29 |
+
|
| 30 |
+
## How to Use
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
git clone https://github.com/mit-han-lab/llm-awq \
|
| 34 |
+
&& cd llm-awq \
|
| 35 |
+
&& git checkout 71d8e68df78de6c0c817b029a568c064bf22132d \
|
| 36 |
+
&& pip install -e . \
|
| 37 |
+
&& cd awq/kernels \\
|
| 38 |
+
&& python setup.py install
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import torch
|
| 43 |
+
from awq.quantize.quantizer import real_quantize_model_weight
|
| 44 |
+
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
|
| 45 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
| 46 |
+
from huggingface_hub import snapshot_download
|
| 47 |
+
|
| 48 |
+
model_name = "mosaicml/mpt-30b-instruct"
|
| 49 |
+
|
| 50 |
+
# Config
|
| 51 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
| 52 |
+
|
| 53 |
+
# Tokenizer
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name)
|
| 55 |
+
|
| 56 |
+
# Model
|
| 57 |
+
w_bit = 4
|
| 58 |
+
q_config = {
|
| 59 |
+
"zero_point": True,
|
| 60 |
+
"q_group_size": 128,
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
load_quant = snapshot_download('abhinavkulkarni/mpt-30b-instruct-w4-g128-awq')
|
| 64 |
+
|
| 65 |
+
with init_empty_weights():
|
| 66 |
+
model = AutoModelForCausalLM.from_config(config=config,
|
| 67 |
+
torch_dtype=torch.float16, trust_remote_code=True)
|
| 68 |
+
|
| 69 |
+
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
|
| 70 |
+
|
| 71 |
+
model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")
|
| 72 |
+
|
| 73 |
+
# Inference
|
| 74 |
+
prompt = f'''What is the difference between nuclear fusion and fission?
|
| 75 |
+
###Response:'''
|
| 76 |
+
|
| 77 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
|
| 78 |
+
output = model.generate(
|
| 79 |
+
inputs=input_ids,
|
| 80 |
+
temperature=0.7,
|
| 81 |
+
max_new_tokens=512,
|
| 82 |
+
top_p=0.15,
|
| 83 |
+
top_k=0,
|
| 84 |
+
repetition_penalty=1.1,
|
| 85 |
+
eos_token_id=tokenizer.eos_token_id
|
| 86 |
+
)
|
| 87 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
## Evaluation
|
| 91 |
+
|
| 92 |
+
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
|
| 93 |
+
|
| 94 |
+
[MPT-30B-Instruct](https://huggingface.co/mosaicml/mpt-30b-instruct)
|
| 95 |
+
|
| 96 |
+
| Task |Version| Metric | Value | |Stderr|
|
| 97 |
+
|--------|------:|---------------|------:|---|------|
|
| 98 |
+
|wikitext| 1|word_perplexity|11.3275| | |
|
| 99 |
+
| | |byte_perplexity| 1.5744| | |
|
| 100 |
+
| | |bits_per_byte | 0.6548| | |
|
| 101 |
+
|
| 102 |
+
[MPT-30B-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/mosaicml-mpt-30b-instruct-w4-g128-awq)
|
| 103 |
+
|
| 104 |
+
| Task |Version| Metric | Value | |Stderr|
|
| 105 |
+
|--------|------:|---------------|------:|---|------|
|
| 106 |
+
|wikitext| 1|word_perplexity|11.6058| | |
|
| 107 |
+
| | |byte_perplexity| 1.5816| | |
|
| 108 |
+
| | |bits_per_byte | 0.6614| | |
|
| 109 |
+
|
| 110 |
+
## Acknowledgements
|
| 111 |
+
|
| 112 |
+
The MPT model was originally finetuned by Sam Havens and the MosaicML NLP team. Please cite this model using the following format:
|
| 113 |
+
|
| 114 |
+
```
|
| 115 |
+
@online{MosaicML2023Introducing,
|
| 116 |
+
author = {MosaicML NLP Team},
|
| 117 |
+
title = {Introducing MPT-30B: A New Standard for Open-Source, Commercially Usable LLMs},
|
| 118 |
+
year = {2023},
|
| 119 |
+
url = {www.mosaicml.com/blog/mpt-30b},
|
| 120 |
+
note = {Accessed: 2023-03-28}, % change this date
|
| 121 |
+
urldate = {2023-03-28} % change this date
|
| 122 |
+
}
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:
|
| 127 |
+
|
| 128 |
+
```
|
| 129 |
+
@article{lin2023awq,
|
| 130 |
+
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
|
| 131 |
+
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
|
| 132 |
+
journal={arXiv},
|
| 133 |
+
year={2023}
|
| 134 |
+
}
|
| 135 |
+
```
|
| 136 |
+
|