Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,60 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
## Usage
|
| 5 |
+
|
| 6 |
+
### Chat format
|
| 7 |
+
|
| 8 |
+
> **IMPORTANT**: This model is **sensitive** to the chat template used. Ensure you use the correct template:
|
| 9 |
+
```
|
| 10 |
+
<s>system
|
| 11 |
+
[System message]</s>
|
| 12 |
+
<s>user
|
| 13 |
+
[Your question or message]</s>
|
| 14 |
+
<s>assistant
|
| 15 |
+
[The model's response]</s>
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
### Example Usage with HuggingFace Transformers
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 23 |
+
|
| 24 |
+
# Determine the device to use (GPU if available, otherwise CPU)
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
|
| 27 |
+
# Load the model and tokenizer, then move the model to the appropriate device
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained("adi2606/MenstrualQA").to(device)
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("adi2606/MenstrualQA")
|
| 30 |
+
|
| 31 |
+
# Function to generate a response from the chatbot
|
| 32 |
+
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
|
| 33 |
+
# Apply the chat template and convert to PyTorch tensors
|
| 34 |
+
messages = [
|
| 35 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 36 |
+
{"role": "user", "content": message}
|
| 37 |
+
]
|
| 38 |
+
input_ids = tokenizer.apply_chat_template(
|
| 39 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
| 40 |
+
).to(device)
|
| 41 |
+
|
| 42 |
+
# Generate the response
|
| 43 |
+
output = model.generate(
|
| 44 |
+
input_ids,
|
| 45 |
+
max_length=512,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
repetition_penalty=repetition_penalty,
|
| 48 |
+
do_sample=True
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Decode the generated output
|
| 52 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 53 |
+
return generated_text
|
| 54 |
+
|
| 55 |
+
# Example usage
|
| 56 |
+
message = "how to stop pain during menstruation?"
|
| 57 |
+
response = generate_response(message)
|
| 58 |
+
print(response)
|
| 59 |
+
|
| 60 |
+
```
|