Update README.md
Browse files
README.md
CHANGED
|
@@ -1,34 +1,93 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
|
|
|
| 4 |
- Computational Biology
|
|
|
|
| 5 |
- Bioinformatics
|
| 6 |
-
-
|
| 7 |
license: apache-2.0
|
|
|
|
| 8 |
---
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
CodonTransformer is a state-of-the-art model designed to predict optimized DNA sequences for given protein sequences and organisms. It achieves state-of-the-art performance compared to existing models in the field.
|
| 13 |
-
More information will be provided soon.
|
| 14 |
|
| 15 |
-
https://github.com/Adibvafa/CodonTransformer
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
## How to Get Started with the Model
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
```python
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
```
|
| 29 |
|
| 30 |
-
You can use CodonTransformer at Google Colab:
|
| 31 |
-
https://adibvafa.github.io/CodonTransformer/GoogleColab
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
| 4 |
+
- CodonTransformer
|
| 5 |
- Computational Biology
|
| 6 |
+
- Machine Learning
|
| 7 |
- Bioinformatics
|
| 8 |
+
- Genetics
|
| 9 |
license: apache-2.0
|
| 10 |
+
pipeline_tag: token-classification
|
| 11 |
---
|
| 12 |
|
| 13 |
+

|
| 14 |
|
| 15 |
+
**CodonTransformer** is the ultimate tool for codon optimization, transforming protein sequences into optimized DNA sequences specific for your target organisms. Whether you are a researcher or a practitioner in genetic engineering, CodonTransformer provides a comprehensive suite of features to facilitate your work. By leveraging the Transformer architecture and a user-friendly Jupyter notebook, it reduces the complexity of codon optimization, saving you time and effort.
|
|
|
|
|
|
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
+
## Use Case
|
| 19 |
+
**For an interactive demo, check out our [Google Colab Notebook.](https://adibvafa.github.io/CodonTransformer/GoogleColab)**
|
| 20 |
+
<br></br>
|
| 21 |
+
After installing CodonTransformer, you can use:
|
| 22 |
+
```python
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import AutoTokenizer, BigBirdForMaskedLM
|
| 25 |
+
from CodonTransformer.CodonPrediction import predict_dna_sequence
|
| 26 |
+
from CodonTransformer.CodonUtils import ORGANISM2ID
|
| 27 |
+
from CodonTransformer.CodonJupyter import format_model_output
|
| 28 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
+
# Load model and tokenizer
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
|
| 33 |
+
model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer").to(DEVICE)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Set your input data
|
| 37 |
+
protein = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG"
|
| 38 |
+
organism = "Escherichia coli general"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Predict with CodonTransformer
|
| 42 |
+
output = predict_dna_sequence(
|
| 43 |
+
protein=protein,
|
| 44 |
+
organism=organism,
|
| 45 |
+
device=DEVICE,
|
| 46 |
+
tokenizer_object=tokenizer,
|
| 47 |
+
model_object=model,
|
| 48 |
+
attention_type="original_full",
|
| 49 |
+
)
|
| 50 |
+
print(format_model_output(output))
|
| 51 |
+
```
|
| 52 |
+
The output is:
|
| 53 |
+
<br>
|
| 54 |
+
|
| 55 |
|
| 56 |
```python
|
| 57 |
+
-----------------------------
|
| 58 |
+
| Organism |
|
| 59 |
+
-----------------------------
|
| 60 |
+
Escherichia coli general
|
| 61 |
|
| 62 |
+
-----------------------------
|
| 63 |
+
| Input Protein |
|
| 64 |
+
-----------------------------
|
| 65 |
+
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG
|
| 66 |
+
|
| 67 |
+
-----------------------------
|
| 68 |
+
| Processed Input |
|
| 69 |
+
-----------------------------
|
| 70 |
+
M_UNK A_UNK L_UNK W_UNK M_UNK R_UNK L_UNK L_UNK P_UNK L_UNK L_UNK A_UNK L_UNK L_UNK A_UNK L_UNK W_UNK G_UNK P_UNK D_UNK P_UNK A_UNK A_UNK A_UNK F_UNK V_UNK N_UNK Q_UNK H_UNK L_UNK C_UNK G_UNK S_UNK H_UNK L_UNK V_UNK E_UNK A_UNK L_UNK Y_UNK L_UNK V_UNK C_UNK G_UNK E_UNK R_UNK G_UNK F_UNK F_UNK Y_UNK T_UNK P_UNK K_UNK T_UNK R_UNK R_UNK E_UNK A_UNK E_UNK D_UNK L_UNK Q_UNK V_UNK G_UNK Q_UNK V_UNK E_UNK L_UNK G_UNK G_UNK __UNK
|
| 71 |
+
|
| 72 |
+
-----------------------------
|
| 73 |
+
| Predicted DNA |
|
| 74 |
+
-----------------------------
|
| 75 |
+
ATGGCTTTATGGATGCGTCTGCTGCCGCTGCTGGCGCTGCTGGCGCTGTGGGGCCCGGACCCGGCGGCGGCGTTTGTGAATCAGCACCTGTGCGGCAGCCACCTGGTGGAAGCGCTGTATCTGGTGTGCGGTGAGCGCGGCTTCTTCTACACGCCCAAAACCCGCCGCGAAGCGGAAGATCTGCAGGTGGGCCAGGTGGAGCTGGGCGGCTAA
|
| 76 |
```
|
| 77 |
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
## Additional Resources
|
| 80 |
+
- **Project Website** <br>
|
| 81 |
+
https://adibvafa.github.io/CodonTransformer/
|
| 82 |
+
|
| 83 |
+
- **GitHub Repository** <br>
|
| 84 |
+
https://github.com/Adibvafa/CodonTransformer
|
| 85 |
+
|
| 86 |
+
- **Google Colab Demo** <br>
|
| 87 |
+
https://adibvafa.github.io/CodonTransformer/GoogleColab
|
| 88 |
+
|
| 89 |
+
- **PyPI Package** <br>
|
| 90 |
+
https://pypi.org/project/CodonTransformer/
|
| 91 |
+
|
| 92 |
+
- **Paper** <br>
|
| 93 |
+
TBD
|