Upload 11 files
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +920 -3
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,920 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: agentlans/multilingual-e5-small-aligned
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
pipeline_tag: sentence-similarity
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:3000000
|
| 11 |
+
- loss:CoSENTLoss
|
| 12 |
+
widget:
|
| 13 |
+
- source_sentence: Jesus answered them.
|
| 14 |
+
sentences:
|
| 15 |
+
- ישוע ענה להם.
|
| 16 |
+
- आत्ताच नीघ.
|
| 17 |
+
- Мы надеялись, что дождь прекратится до обеда.
|
| 18 |
+
- source_sentence: Foreign books are sold at the shop.
|
| 19 |
+
sentences:
|
| 20 |
+
- Tak, det er alt.
|
| 21 |
+
- Корабль бросил якорь.
|
| 22 |
+
- Les livres étrangers sont vendus à la boutique.
|
| 23 |
+
- source_sentence: Cats usually hate dogs.
|
| 24 |
+
sentences:
|
| 25 |
+
- Куда вы ходили в прошлое воскресенье?
|
| 26 |
+
- The bottles of beer that I brought to the party were redundant; the host's family
|
| 27 |
+
owned a brewery.
|
| 28 |
+
- Mir tut der Arm weh.
|
| 29 |
+
- source_sentence: How foolish I was not to discover that simple lie!
|
| 30 |
+
sentences:
|
| 31 |
+
- Tenho umas perguntas pra fazer, mas não quero te incomodar.
|
| 32 |
+
- Mi piacciono di più le mele.
|
| 33 |
+
- Quel idiot j'étais de n'avoir pas découvert ce simple mensonge !
|
| 34 |
+
- source_sentence: Esta es mi amiga Rachel, fuimos al instituto juntos.
|
| 35 |
+
sentences:
|
| 36 |
+
- Το σχολείο μας έχει εννιά τάξεις.
|
| 37 |
+
- When applying to American universities, your TOEFL score is only one factor.
|
| 38 |
+
- Je n'ai pas encore pris ma décision.
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
# SentenceTransformer based on agentlans/multilingual-e5-small-aligned
|
| 42 |
+
|
| 43 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [agentlans/multilingual-e5-small-aligned](https://huggingface.co/agentlans/multilingual-e5-small-aligned). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 44 |
+
|
| 45 |
+
## Model Details
|
| 46 |
+
|
| 47 |
+
### Model Description
|
| 48 |
+
- **Model Type:** Sentence Transformer
|
| 49 |
+
- **Base model:** [agentlans/multilingual-e5-small-aligned](https://huggingface.co/agentlans/multilingual-e5-small-aligned) <!-- at revision 2876d21d801703ad25135704219f92d970e48971 -->
|
| 50 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
+
- **Output Dimensionality:** 384 dimensions
|
| 52 |
+
- **Similarity Function:** Cosine Similarity
|
| 53 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 54 |
+
<!-- - **Language:** Unknown -->
|
| 55 |
+
<!-- - **License:** Unknown -->
|
| 56 |
+
|
| 57 |
+
### Model Sources
|
| 58 |
+
|
| 59 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 60 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 61 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 62 |
+
|
| 63 |
+
### Full Model Architecture
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
SentenceTransformer(
|
| 67 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 68 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 69 |
+
(2): Normalize()
|
| 70 |
+
)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Usage
|
| 74 |
+
|
| 75 |
+
### Direct Usage (Sentence Transformers)
|
| 76 |
+
|
| 77 |
+
First install the Sentence Transformers library:
|
| 78 |
+
|
| 79 |
+
```bash
|
| 80 |
+
pip install -U sentence-transformers
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
Then you can load this model and run inference.
|
| 84 |
+
```python
|
| 85 |
+
from sentence_transformers import SentenceTransformer
|
| 86 |
+
|
| 87 |
+
# Download from the 🤗 Hub
|
| 88 |
+
model = SentenceTransformer("agentlans/multilingual-e5-small-aligned-v2")
|
| 89 |
+
# Run inference
|
| 90 |
+
sentences = [
|
| 91 |
+
'Esta es mi amiga Rachel, fuimos al instituto juntos.',
|
| 92 |
+
"Je n'ai pas encore pris ma décision.",
|
| 93 |
+
'When applying to American universities, your TOEFL score is only one factor.',
|
| 94 |
+
]
|
| 95 |
+
embeddings = model.encode(sentences)
|
| 96 |
+
print(embeddings.shape)
|
| 97 |
+
# [3, 384]
|
| 98 |
+
|
| 99 |
+
# Get the similarity scores for the embeddings
|
| 100 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
+
print(similarities.shape)
|
| 102 |
+
# [3, 3]
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
<!--
|
| 106 |
+
### Direct Usage (Transformers)
|
| 107 |
+
|
| 108 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 109 |
+
|
| 110 |
+
</details>
|
| 111 |
+
-->
|
| 112 |
+
|
| 113 |
+
<!--
|
| 114 |
+
### Downstream Usage (Sentence Transformers)
|
| 115 |
+
|
| 116 |
+
You can finetune this model on your own dataset.
|
| 117 |
+
|
| 118 |
+
<details><summary>Click to expand</summary>
|
| 119 |
+
|
| 120 |
+
</details>
|
| 121 |
+
-->
|
| 122 |
+
|
| 123 |
+
<!--
|
| 124 |
+
### Out-of-Scope Use
|
| 125 |
+
|
| 126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 127 |
+
-->
|
| 128 |
+
|
| 129 |
+
<!--
|
| 130 |
+
## Bias, Risks and Limitations
|
| 131 |
+
|
| 132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 133 |
+
-->
|
| 134 |
+
|
| 135 |
+
<!--
|
| 136 |
+
### Recommendations
|
| 137 |
+
|
| 138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 139 |
+
-->
|
| 140 |
+
|
| 141 |
+
## Training Details
|
| 142 |
+
|
| 143 |
+
### Training Dataset
|
| 144 |
+
|
| 145 |
+
#### Unnamed Dataset
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
* Size: 3,000,000 training samples
|
| 149 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 150 |
+
* Approximate statistics based on the first 1000 samples:
|
| 151 |
+
| | sentence_0 | sentence_1 | label |
|
| 152 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 153 |
+
| type | string | string | float |
|
| 154 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.16 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.27 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
|
| 155 |
+
* Samples:
|
| 156 |
+
| sentence_0 | sentence_1 | label |
|
| 157 |
+
|:------------------------------------------|:-----------------------------------------|:-----------------|
|
| 158 |
+
| <code>Bring your friends with you.</code> | <code>Traga seus amigos com você.</code> | <code>1.0</code> |
|
| 159 |
+
| <code>I've been there already.</code> | <code>Você tem algo mais barato?</code> | <code>0.0</code> |
|
| 160 |
+
| <code>All my homework is done.</code> | <code>माझा सगळा होमवर्क झाला आहे.</code> | <code>1.0</code> |
|
| 161 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
| 162 |
+
```json
|
| 163 |
+
{
|
| 164 |
+
"scale": 20.0,
|
| 165 |
+
"similarity_fct": "pairwise_cos_sim"
|
| 166 |
+
}
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### Training Hyperparameters
|
| 170 |
+
#### Non-Default Hyperparameters
|
| 171 |
+
|
| 172 |
+
- `per_device_train_batch_size`: 32
|
| 173 |
+
- `per_device_eval_batch_size`: 32
|
| 174 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 175 |
+
|
| 176 |
+
#### All Hyperparameters
|
| 177 |
+
<details><summary>Click to expand</summary>
|
| 178 |
+
|
| 179 |
+
- `overwrite_output_dir`: False
|
| 180 |
+
- `do_predict`: False
|
| 181 |
+
- `eval_strategy`: no
|
| 182 |
+
- `prediction_loss_only`: True
|
| 183 |
+
- `per_device_train_batch_size`: 32
|
| 184 |
+
- `per_device_eval_batch_size`: 32
|
| 185 |
+
- `per_gpu_train_batch_size`: None
|
| 186 |
+
- `per_gpu_eval_batch_size`: None
|
| 187 |
+
- `gradient_accumulation_steps`: 1
|
| 188 |
+
- `eval_accumulation_steps`: None
|
| 189 |
+
- `torch_empty_cache_steps`: None
|
| 190 |
+
- `learning_rate`: 5e-05
|
| 191 |
+
- `weight_decay`: 0.0
|
| 192 |
+
- `adam_beta1`: 0.9
|
| 193 |
+
- `adam_beta2`: 0.999
|
| 194 |
+
- `adam_epsilon`: 1e-08
|
| 195 |
+
- `max_grad_norm`: 1
|
| 196 |
+
- `num_train_epochs`: 3
|
| 197 |
+
- `max_steps`: -1
|
| 198 |
+
- `lr_scheduler_type`: linear
|
| 199 |
+
- `lr_scheduler_kwargs`: {}
|
| 200 |
+
- `warmup_ratio`: 0.0
|
| 201 |
+
- `warmup_steps`: 0
|
| 202 |
+
- `log_level`: passive
|
| 203 |
+
- `log_level_replica`: warning
|
| 204 |
+
- `log_on_each_node`: True
|
| 205 |
+
- `logging_nan_inf_filter`: True
|
| 206 |
+
- `save_safetensors`: True
|
| 207 |
+
- `save_on_each_node`: False
|
| 208 |
+
- `save_only_model`: False
|
| 209 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 210 |
+
- `no_cuda`: False
|
| 211 |
+
- `use_cpu`: False
|
| 212 |
+
- `use_mps_device`: False
|
| 213 |
+
- `seed`: 42
|
| 214 |
+
- `data_seed`: None
|
| 215 |
+
- `jit_mode_eval`: False
|
| 216 |
+
- `use_ipex`: False
|
| 217 |
+
- `bf16`: False
|
| 218 |
+
- `fp16`: False
|
| 219 |
+
- `fp16_opt_level`: O1
|
| 220 |
+
- `half_precision_backend`: auto
|
| 221 |
+
- `bf16_full_eval`: False
|
| 222 |
+
- `fp16_full_eval`: False
|
| 223 |
+
- `tf32`: None
|
| 224 |
+
- `local_rank`: 0
|
| 225 |
+
- `ddp_backend`: None
|
| 226 |
+
- `tpu_num_cores`: None
|
| 227 |
+
- `tpu_metrics_debug`: False
|
| 228 |
+
- `debug`: []
|
| 229 |
+
- `dataloader_drop_last`: False
|
| 230 |
+
- `dataloader_num_workers`: 0
|
| 231 |
+
- `dataloader_prefetch_factor`: None
|
| 232 |
+
- `past_index`: -1
|
| 233 |
+
- `disable_tqdm`: False
|
| 234 |
+
- `remove_unused_columns`: True
|
| 235 |
+
- `label_names`: None
|
| 236 |
+
- `load_best_model_at_end`: False
|
| 237 |
+
- `ignore_data_skip`: False
|
| 238 |
+
- `fsdp`: []
|
| 239 |
+
- `fsdp_min_num_params`: 0
|
| 240 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 241 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 242 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 243 |
+
- `deepspeed`: None
|
| 244 |
+
- `label_smoothing_factor`: 0.0
|
| 245 |
+
- `optim`: adamw_torch
|
| 246 |
+
- `optim_args`: None
|
| 247 |
+
- `adafactor`: False
|
| 248 |
+
- `group_by_length`: False
|
| 249 |
+
- `length_column_name`: length
|
| 250 |
+
- `ddp_find_unused_parameters`: None
|
| 251 |
+
- `ddp_bucket_cap_mb`: None
|
| 252 |
+
- `ddp_broadcast_buffers`: False
|
| 253 |
+
- `dataloader_pin_memory`: True
|
| 254 |
+
- `dataloader_persistent_workers`: False
|
| 255 |
+
- `skip_memory_metrics`: True
|
| 256 |
+
- `use_legacy_prediction_loop`: False
|
| 257 |
+
- `push_to_hub`: False
|
| 258 |
+
- `resume_from_checkpoint`: None
|
| 259 |
+
- `hub_model_id`: None
|
| 260 |
+
- `hub_strategy`: every_save
|
| 261 |
+
- `hub_private_repo`: False
|
| 262 |
+
- `hub_always_push`: False
|
| 263 |
+
- `gradient_checkpointing`: False
|
| 264 |
+
- `gradient_checkpointing_kwargs`: None
|
| 265 |
+
- `include_inputs_for_metrics`: False
|
| 266 |
+
- `include_for_metrics`: []
|
| 267 |
+
- `eval_do_concat_batches`: True
|
| 268 |
+
- `fp16_backend`: auto
|
| 269 |
+
- `push_to_hub_model_id`: None
|
| 270 |
+
- `push_to_hub_organization`: None
|
| 271 |
+
- `mp_parameters`:
|
| 272 |
+
- `auto_find_batch_size`: False
|
| 273 |
+
- `full_determinism`: False
|
| 274 |
+
- `torchdynamo`: None
|
| 275 |
+
- `ray_scope`: last
|
| 276 |
+
- `ddp_timeout`: 1800
|
| 277 |
+
- `torch_compile`: False
|
| 278 |
+
- `torch_compile_backend`: None
|
| 279 |
+
- `torch_compile_mode`: None
|
| 280 |
+
- `dispatch_batches`: None
|
| 281 |
+
- `split_batches`: None
|
| 282 |
+
- `include_tokens_per_second`: False
|
| 283 |
+
- `include_num_input_tokens_seen`: False
|
| 284 |
+
- `neftune_noise_alpha`: None
|
| 285 |
+
- `optim_target_modules`: None
|
| 286 |
+
- `batch_eval_metrics`: False
|
| 287 |
+
- `eval_on_start`: False
|
| 288 |
+
- `use_liger_kernel`: False
|
| 289 |
+
- `eval_use_gather_object`: False
|
| 290 |
+
- `average_tokens_across_devices`: False
|
| 291 |
+
- `prompts`: None
|
| 292 |
+
- `batch_sampler`: batch_sampler
|
| 293 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 294 |
+
|
| 295 |
+
</details>
|
| 296 |
+
|
| 297 |
+
### Training Logs
|
| 298 |
+
<details><summary>Click to expand</summary>
|
| 299 |
+
|
| 300 |
+
| Epoch | Step | Training Loss |
|
| 301 |
+
|:------:|:------:|:-------------:|
|
| 302 |
+
| 0.0053 | 500 | 0.835 |
|
| 303 |
+
| 0.0107 | 1000 | 0.7012 |
|
| 304 |
+
| 0.016 | 1500 | 0.6765 |
|
| 305 |
+
| 0.0213 | 2000 | 0.4654 |
|
| 306 |
+
| 0.0267 | 2500 | 0.7546 |
|
| 307 |
+
| 0.032 | 3000 | 0.6098 |
|
| 308 |
+
| 0.0373 | 3500 | 0.644 |
|
| 309 |
+
| 0.0427 | 4000 | 0.5318 |
|
| 310 |
+
| 0.048 | 4500 | 0.5638 |
|
| 311 |
+
| 0.0533 | 5000 | 0.5556 |
|
| 312 |
+
| 0.0587 | 5500 | 0.5165 |
|
| 313 |
+
| 0.064 | 6000 | 0.4083 |
|
| 314 |
+
| 0.0693 | 6500 | 0.4683 |
|
| 315 |
+
| 0.0747 | 7000 | 0.5414 |
|
| 316 |
+
| 0.08 | 7500 | 0.4678 |
|
| 317 |
+
| 0.0853 | 8000 | 0.4225 |
|
| 318 |
+
| 0.0907 | 8500 | 0.4552 |
|
| 319 |
+
| 0.096 | 9000 | 0.4551 |
|
| 320 |
+
| 0.1013 | 9500 | 0.4347 |
|
| 321 |
+
| 0.1067 | 10000 | 0.292 |
|
| 322 |
+
| 0.112 | 10500 | 0.4677 |
|
| 323 |
+
| 0.1173 | 11000 | 0.3567 |
|
| 324 |
+
| 0.1227 | 11500 | 0.4663 |
|
| 325 |
+
| 0.128 | 12000 | 0.4333 |
|
| 326 |
+
| 0.1333 | 12500 | 0.375 |
|
| 327 |
+
| 0.1387 | 13000 | 0.4183 |
|
| 328 |
+
| 0.144 | 13500 | 0.5745 |
|
| 329 |
+
| 0.1493 | 14000 | 0.4569 |
|
| 330 |
+
| 0.1547 | 14500 | 0.426 |
|
| 331 |
+
| 0.16 | 15000 | 0.4903 |
|
| 332 |
+
| 0.1653 | 15500 | 0.4287 |
|
| 333 |
+
| 0.1707 | 16000 | 0.4375 |
|
| 334 |
+
| 0.176 | 16500 | 0.377 |
|
| 335 |
+
| 0.1813 | 17000 | 0.3848 |
|
| 336 |
+
| 0.1867 | 17500 | 0.3366 |
|
| 337 |
+
| 0.192 | 18000 | 0.3784 |
|
| 338 |
+
| 0.1973 | 18500 | 0.399 |
|
| 339 |
+
| 0.2027 | 19000 | 0.3798 |
|
| 340 |
+
| 0.208 | 19500 | 0.3275 |
|
| 341 |
+
| 0.2133 | 20000 | 0.3594 |
|
| 342 |
+
| 0.2187 | 20500 | 0.3555 |
|
| 343 |
+
| 0.224 | 21000 | 0.3565 |
|
| 344 |
+
| 0.2293 | 21500 | 0.4264 |
|
| 345 |
+
| 0.2347 | 22000 | 0.4138 |
|
| 346 |
+
| 0.24 | 22500 | 0.3149 |
|
| 347 |
+
| 0.2453 | 23000 | 0.3397 |
|
| 348 |
+
| 0.2507 | 23500 | 0.359 |
|
| 349 |
+
| 0.256 | 24000 | 0.3311 |
|
| 350 |
+
| 0.2613 | 24500 | 0.3632 |
|
| 351 |
+
| 0.2667 | 25000 | 0.366 |
|
| 352 |
+
| 0.272 | 25500 | 0.2899 |
|
| 353 |
+
| 0.2773 | 26000 | 0.2611 |
|
| 354 |
+
| 0.2827 | 26500 | 0.3497 |
|
| 355 |
+
| 0.288 | 27000 | 0.3534 |
|
| 356 |
+
| 0.2933 | 27500 | 0.273 |
|
| 357 |
+
| 0.2987 | 28000 | 0.3199 |
|
| 358 |
+
| 0.304 | 28500 | 0.2527 |
|
| 359 |
+
| 0.3093 | 29000 | 0.2755 |
|
| 360 |
+
| 0.3147 | 29500 | 0.3684 |
|
| 361 |
+
| 0.32 | 30000 | 0.347 |
|
| 362 |
+
| 0.3253 | 30500 | 0.2537 |
|
| 363 |
+
| 0.3307 | 31000 | 0.3665 |
|
| 364 |
+
| 0.336 | 31500 | 0.2512 |
|
| 365 |
+
| 0.3413 | 32000 | 0.2913 |
|
| 366 |
+
| 0.3467 | 32500 | 0.2619 |
|
| 367 |
+
| 0.352 | 33000 | 0.2573 |
|
| 368 |
+
| 0.3573 | 33500 | 0.3036 |
|
| 369 |
+
| 0.3627 | 34000 | 0.3388 |
|
| 370 |
+
| 0.368 | 34500 | 0.2384 |
|
| 371 |
+
| 0.3733 | 35000 | 0.31 |
|
| 372 |
+
| 0.3787 | 35500 | 0.3461 |
|
| 373 |
+
| 0.384 | 36000 | 0.378 |
|
| 374 |
+
| 0.3893 | 36500 | 0.2409 |
|
| 375 |
+
| 0.3947 | 37000 | 0.2969 |
|
| 376 |
+
| 0.4 | 37500 | 0.2881 |
|
| 377 |
+
| 0.4053 | 38000 | 0.3612 |
|
| 378 |
+
| 0.4107 | 38500 | 0.2662 |
|
| 379 |
+
| 0.416 | 39000 | 0.2796 |
|
| 380 |
+
| 0.4213 | 39500 | 0.3298 |
|
| 381 |
+
| 0.4267 | 40000 | 0.2828 |
|
| 382 |
+
| 0.432 | 40500 | 0.2367 |
|
| 383 |
+
| 0.4373 | 41000 | 0.2661 |
|
| 384 |
+
| 0.4427 | 41500 | 0.393 |
|
| 385 |
+
| 0.448 | 42000 | 0.2875 |
|
| 386 |
+
| 0.4533 | 42500 | 0.203 |
|
| 387 |
+
| 0.4587 | 43000 | 0.3211 |
|
| 388 |
+
| 0.464 | 43500 | 0.3404 |
|
| 389 |
+
| 0.4693 | 44000 | 0.315 |
|
| 390 |
+
| 0.4747 | 44500 | 0.3018 |
|
| 391 |
+
| 0.48 | 45000 | 0.2491 |
|
| 392 |
+
| 0.4853 | 45500 | 0.2584 |
|
| 393 |
+
| 0.4907 | 46000 | 0.2583 |
|
| 394 |
+
| 0.496 | 46500 | 0.3447 |
|
| 395 |
+
| 0.5013 | 47000 | 0.4332 |
|
| 396 |
+
| 0.5067 | 47500 | 0.297 |
|
| 397 |
+
| 0.512 | 48000 | 0.2697 |
|
| 398 |
+
| 0.5173 | 48500 | 0.2349 |
|
| 399 |
+
| 0.5227 | 49000 | 0.2176 |
|
| 400 |
+
| 0.528 | 49500 | 0.2775 |
|
| 401 |
+
| 0.5333 | 50000 | 0.2508 |
|
| 402 |
+
| 0.5387 | 50500 | 0.291 |
|
| 403 |
+
| 0.544 | 51000 | 0.2672 |
|
| 404 |
+
| 0.5493 | 51500 | 0.2638 |
|
| 405 |
+
| 0.5547 | 52000 | 0.2877 |
|
| 406 |
+
| 0.56 | 52500 | 0.2758 |
|
| 407 |
+
| 0.5653 | 53000 | 0.264 |
|
| 408 |
+
| 0.5707 | 53500 | 0.2372 |
|
| 409 |
+
| 0.576 | 54000 | 0.3384 |
|
| 410 |
+
| 0.5813 | 54500 | 0.2459 |
|
| 411 |
+
| 0.5867 | 55000 | 0.3047 |
|
| 412 |
+
| 0.592 | 55500 | 0.1926 |
|
| 413 |
+
| 0.5973 | 56000 | 0.2573 |
|
| 414 |
+
| 0.6027 | 56500 | 0.2816 |
|
| 415 |
+
| 0.608 | 57000 | 0.285 |
|
| 416 |
+
| 0.6133 | 57500 | 0.2397 |
|
| 417 |
+
| 0.6187 | 58000 | 0.1935 |
|
| 418 |
+
| 0.624 | 58500 | 0.3281 |
|
| 419 |
+
| 0.6293 | 59000 | 0.3306 |
|
| 420 |
+
| 0.6347 | 59500 | 0.2067 |
|
| 421 |
+
| 0.64 | 60000 | 0.2483 |
|
| 422 |
+
| 0.6453 | 60500 | 0.2719 |
|
| 423 |
+
| 0.6507 | 61000 | 0.2585 |
|
| 424 |
+
| 0.656 | 61500 | 0.2385 |
|
| 425 |
+
| 0.6613 | 62000 | 0.2229 |
|
| 426 |
+
| 0.6667 | 62500 | 0.2311 |
|
| 427 |
+
| 0.672 | 63000 | 0.2664 |
|
| 428 |
+
| 0.6773 | 63500 | 0.209 |
|
| 429 |
+
| 0.6827 | 64000 | 0.2643 |
|
| 430 |
+
| 0.688 | 64500 | 0.2108 |
|
| 431 |
+
| 0.6933 | 65000 | 0.3063 |
|
| 432 |
+
| 0.6987 | 65500 | 0.1802 |
|
| 433 |
+
| 0.704 | 66000 | 0.2285 |
|
| 434 |
+
| 0.7093 | 66500 | 0.2065 |
|
| 435 |
+
| 0.7147 | 67000 | 0.2467 |
|
| 436 |
+
| 0.72 | 67500 | 0.2178 |
|
| 437 |
+
| 0.7253 | 68000 | 0.2217 |
|
| 438 |
+
| 0.7307 | 68500 | 0.2549 |
|
| 439 |
+
| 0.736 | 69000 | 0.2026 |
|
| 440 |
+
| 0.7413 | 69500 | 0.2609 |
|
| 441 |
+
| 0.7467 | 70000 | 0.2393 |
|
| 442 |
+
| 0.752 | 70500 | 0.1958 |
|
| 443 |
+
| 0.7573 | 71000 | 0.2214 |
|
| 444 |
+
| 0.7627 | 71500 | 0.2079 |
|
| 445 |
+
| 0.768 | 72000 | 0.1574 |
|
| 446 |
+
| 0.7733 | 72500 | 0.2356 |
|
| 447 |
+
| 0.7787 | 73000 | 0.1864 |
|
| 448 |
+
| 0.784 | 73500 | 0.257 |
|
| 449 |
+
| 0.7893 | 74000 | 0.2149 |
|
| 450 |
+
| 0.7947 | 74500 | 0.2519 |
|
| 451 |
+
| 0.8 | 75000 | 0.2746 |
|
| 452 |
+
| 0.8053 | 75500 | 0.2145 |
|
| 453 |
+
| 0.8107 | 76000 | 0.2732 |
|
| 454 |
+
| 0.816 | 76500 | 0.2456 |
|
| 455 |
+
| 0.8213 | 77000 | 0.1841 |
|
| 456 |
+
| 0.8267 | 77500 | 0.1876 |
|
| 457 |
+
| 0.832 | 78000 | 0.2661 |
|
| 458 |
+
| 0.8373 | 78500 | 0.1293 |
|
| 459 |
+
| 0.8427 | 79000 | 0.2018 |
|
| 460 |
+
| 0.848 | 79500 | 0.1854 |
|
| 461 |
+
| 0.8533 | 80000 | 0.1644 |
|
| 462 |
+
| 0.8587 | 80500 | 0.1844 |
|
| 463 |
+
| 0.864 | 81000 | 0.1937 |
|
| 464 |
+
| 0.8693 | 81500 | 0.1486 |
|
| 465 |
+
| 0.8747 | 82000 | 0.244 |
|
| 466 |
+
| 0.88 | 82500 | 0.131 |
|
| 467 |
+
| 0.8853 | 83000 | 0.215 |
|
| 468 |
+
| 0.8907 | 83500 | 0.2398 |
|
| 469 |
+
| 0.896 | 84000 | 0.2014 |
|
| 470 |
+
| 0.9013 | 84500 | 0.1703 |
|
| 471 |
+
| 0.9067 | 85000 | 0.2009 |
|
| 472 |
+
| 0.912 | 85500 | 0.1712 |
|
| 473 |
+
| 0.9173 | 86000 | 0.2649 |
|
| 474 |
+
| 0.9227 | 86500 | 0.2149 |
|
| 475 |
+
| 0.928 | 87000 | 0.1912 |
|
| 476 |
+
| 0.9333 | 87500 | 0.1902 |
|
| 477 |
+
| 0.9387 | 88000 | 0.2609 |
|
| 478 |
+
| 0.944 | 88500 | 0.1846 |
|
| 479 |
+
| 0.9493 | 89000 | 0.1485 |
|
| 480 |
+
| 0.9547 | 89500 | 0.2076 |
|
| 481 |
+
| 0.96 | 90000 | 0.2449 |
|
| 482 |
+
| 0.9653 | 90500 | 0.2025 |
|
| 483 |
+
| 0.9707 | 91000 | 0.2635 |
|
| 484 |
+
| 0.976 | 91500 | 0.2596 |
|
| 485 |
+
| 0.9813 | 92000 | 0.2221 |
|
| 486 |
+
| 0.9867 | 92500 | 0.2168 |
|
| 487 |
+
| 0.992 | 93000 | 0.192 |
|
| 488 |
+
| 0.9973 | 93500 | 0.1966 |
|
| 489 |
+
| 1.0027 | 94000 | 0.2112 |
|
| 490 |
+
| 1.008 | 94500 | 0.1628 |
|
| 491 |
+
| 1.0133 | 95000 | 0.1059 |
|
| 492 |
+
| 1.0187 | 95500 | 0.1403 |
|
| 493 |
+
| 1.024 | 96000 | 0.1726 |
|
| 494 |
+
| 1.0293 | 96500 | 0.1973 |
|
| 495 |
+
| 1.0347 | 97000 | 0.1682 |
|
| 496 |
+
| 1.04 | 97500 | 0.1319 |
|
| 497 |
+
| 1.0453 | 98000 | 0.1427 |
|
| 498 |
+
| 1.0507 | 98500 | 0.1448 |
|
| 499 |
+
| 1.056 | 99000 | 0.1215 |
|
| 500 |
+
| 1.0613 | 99500 | 0.1064 |
|
| 501 |
+
| 1.0667 | 100000 | 0.0856 |
|
| 502 |
+
| 1.072 | 100500 | 0.1046 |
|
| 503 |
+
| 1.0773 | 101000 | 0.1127 |
|
| 504 |
+
| 1.0827 | 101500 | 0.0988 |
|
| 505 |
+
| 1.088 | 102000 | 0.1598 |
|
| 506 |
+
| 1.0933 | 102500 | 0.1592 |
|
| 507 |
+
| 1.0987 | 103000 | 0.1122 |
|
| 508 |
+
| 1.104 | 103500 | 0.0771 |
|
| 509 |
+
| 1.1093 | 104000 | 0.1355 |
|
| 510 |
+
| 1.1147 | 104500 | 0.1265 |
|
| 511 |
+
| 1.12 | 105000 | 0.1464 |
|
| 512 |
+
| 1.1253 | 105500 | 0.1578 |
|
| 513 |
+
| 1.1307 | 106000 | 0.1017 |
|
| 514 |
+
| 1.1360 | 106500 | 0.1047 |
|
| 515 |
+
| 1.1413 | 107000 | 0.1865 |
|
| 516 |
+
| 1.1467 | 107500 | 0.1721 |
|
| 517 |
+
| 1.152 | 108000 | 0.1096 |
|
| 518 |
+
| 1.1573 | 108500 | 0.181 |
|
| 519 |
+
| 1.1627 | 109000 | 0.1261 |
|
| 520 |
+
| 1.168 | 109500 | 0.1111 |
|
| 521 |
+
| 1.1733 | 110000 | 0.1286 |
|
| 522 |
+
| 1.1787 | 110500 | 0.1014 |
|
| 523 |
+
| 1.184 | 111000 | 0.1033 |
|
| 524 |
+
| 1.1893 | 111500 | 0.1124 |
|
| 525 |
+
| 1.1947 | 112000 | 0.1316 |
|
| 526 |
+
| 1.2 | 112500 | 0.1147 |
|
| 527 |
+
| 1.2053 | 113000 | 0.095 |
|
| 528 |
+
| 1.2107 | 113500 | 0.1074 |
|
| 529 |
+
| 1.216 | 114000 | 0.1183 |
|
| 530 |
+
| 1.2213 | 114500 | 0.1219 |
|
| 531 |
+
| 1.2267 | 115000 | 0.1264 |
|
| 532 |
+
| 1.232 | 115500 | 0.1339 |
|
| 533 |
+
| 1.2373 | 116000 | 0.0903 |
|
| 534 |
+
| 1.2427 | 116500 | 0.0923 |
|
| 535 |
+
| 1.248 | 117000 | 0.1028 |
|
| 536 |
+
| 1.2533 | 117500 | 0.093 |
|
| 537 |
+
| 1.2587 | 118000 | 0.1024 |
|
| 538 |
+
| 1.264 | 118500 | 0.1107 |
|
| 539 |
+
| 1.2693 | 119000 | 0.1078 |
|
| 540 |
+
| 1.2747 | 119500 | 0.0469 |
|
| 541 |
+
| 1.28 | 120000 | 0.107 |
|
| 542 |
+
| 1.2853 | 120500 | 0.1578 |
|
| 543 |
+
| 1.2907 | 121000 | 0.1012 |
|
| 544 |
+
| 1.296 | 121500 | 0.064 |
|
| 545 |
+
| 1.3013 | 122000 | 0.0816 |
|
| 546 |
+
| 1.3067 | 122500 | 0.0656 |
|
| 547 |
+
| 1.312 | 123000 | 0.1314 |
|
| 548 |
+
| 1.3173 | 123500 | 0.1345 |
|
| 549 |
+
| 1.3227 | 124000 | 0.1057 |
|
| 550 |
+
| 1.328 | 124500 | 0.1051 |
|
| 551 |
+
| 1.3333 | 125000 | 0.1246 |
|
| 552 |
+
| 1.3387 | 125500 | 0.0827 |
|
| 553 |
+
| 1.3440 | 126000 | 0.0763 |
|
| 554 |
+
| 1.3493 | 126500 | 0.0887 |
|
| 555 |
+
| 1.3547 | 127000 | 0.1332 |
|
| 556 |
+
| 1.3600 | 127500 | 0.0939 |
|
| 557 |
+
| 1.3653 | 128000 | 0.087 |
|
| 558 |
+
| 1.3707 | 128500 | 0.0671 |
|
| 559 |
+
| 1.376 | 129000 | 0.1377 |
|
| 560 |
+
| 1.3813 | 129500 | 0.1066 |
|
| 561 |
+
| 1.3867 | 130000 | 0.1224 |
|
| 562 |
+
| 1.392 | 130500 | 0.0797 |
|
| 563 |
+
| 1.3973 | 131000 | 0.0712 |
|
| 564 |
+
| 1.4027 | 131500 | 0.1141 |
|
| 565 |
+
| 1.408 | 132000 | 0.1045 |
|
| 566 |
+
| 1.4133 | 132500 | 0.0894 |
|
| 567 |
+
| 1.4187 | 133000 | 0.0897 |
|
| 568 |
+
| 1.424 | 133500 | 0.0779 |
|
| 569 |
+
| 1.4293 | 134000 | 0.0944 |
|
| 570 |
+
| 1.4347 | 134500 | 0.0674 |
|
| 571 |
+
| 1.44 | 135000 | 0.1532 |
|
| 572 |
+
| 1.4453 | 135500 | 0.0771 |
|
| 573 |
+
| 1.4507 | 136000 | 0.1154 |
|
| 574 |
+
| 1.456 | 136500 | 0.1159 |
|
| 575 |
+
| 1.4613 | 137000 | 0.147 |
|
| 576 |
+
| 1.4667 | 137500 | 0.0925 |
|
| 577 |
+
| 1.472 | 138000 | 0.0985 |
|
| 578 |
+
| 1.4773 | 138500 | 0.1023 |
|
| 579 |
+
| 1.4827 | 139000 | 0.082 |
|
| 580 |
+
| 1.488 | 139500 | 0.0947 |
|
| 581 |
+
| 1.4933 | 140000 | 0.0901 |
|
| 582 |
+
| 1.4987 | 140500 | 0.127 |
|
| 583 |
+
| 1.504 | 141000 | 0.1584 |
|
| 584 |
+
| 1.5093 | 141500 | 0.0734 |
|
| 585 |
+
| 1.5147 | 142000 | 0.1065 |
|
| 586 |
+
| 1.52 | 142500 | 0.0568 |
|
| 587 |
+
| 1.5253 | 143000 | 0.1081 |
|
| 588 |
+
| 1.5307 | 143500 | 0.0727 |
|
| 589 |
+
| 1.536 | 144000 | 0.1346 |
|
| 590 |
+
| 1.5413 | 144500 | 0.0894 |
|
| 591 |
+
| 1.5467 | 145000 | 0.0739 |
|
| 592 |
+
| 1.552 | 145500 | 0.0926 |
|
| 593 |
+
| 1.5573 | 146000 | 0.0984 |
|
| 594 |
+
| 1.5627 | 146500 | 0.0975 |
|
| 595 |
+
| 1.568 | 147000 | 0.0839 |
|
| 596 |
+
| 1.5733 | 147500 | 0.1053 |
|
| 597 |
+
| 1.5787 | 148000 | 0.1369 |
|
| 598 |
+
| 1.584 | 148500 | 0.093 |
|
| 599 |
+
| 1.5893 | 149000 | 0.1008 |
|
| 600 |
+
| 1.5947 | 149500 | 0.0981 |
|
| 601 |
+
| 1.6 | 150000 | 0.1071 |
|
| 602 |
+
| 1.6053 | 150500 | 0.0955 |
|
| 603 |
+
| 1.6107 | 151000 | 0.0901 |
|
| 604 |
+
| 1.616 | 151500 | 0.0803 |
|
| 605 |
+
| 1.6213 | 152000 | 0.1119 |
|
| 606 |
+
| 1.6267 | 152500 | 0.0679 |
|
| 607 |
+
| 1.6320 | 153000 | 0.1135 |
|
| 608 |
+
| 1.6373 | 153500 | 0.0768 |
|
| 609 |
+
| 1.6427 | 154000 | 0.0837 |
|
| 610 |
+
| 1.6480 | 154500 | 0.0857 |
|
| 611 |
+
| 1.6533 | 155000 | 0.0928 |
|
| 612 |
+
| 1.6587 | 155500 | 0.0808 |
|
| 613 |
+
| 1.6640 | 156000 | 0.0823 |
|
| 614 |
+
| 1.6693 | 156500 | 0.0713 |
|
| 615 |
+
| 1.6747 | 157000 | 0.0892 |
|
| 616 |
+
| 1.6800 | 157500 | 0.0914 |
|
| 617 |
+
| 1.6853 | 158000 | 0.0735 |
|
| 618 |
+
| 1.6907 | 158500 | 0.0827 |
|
| 619 |
+
| 1.696 | 159000 | 0.1006 |
|
| 620 |
+
| 1.7013 | 159500 | 0.0837 |
|
| 621 |
+
| 1.7067 | 160000 | 0.0812 |
|
| 622 |
+
| 1.712 | 160500 | 0.1056 |
|
| 623 |
+
| 1.7173 | 161000 | 0.0878 |
|
| 624 |
+
| 1.7227 | 161500 | 0.0625 |
|
| 625 |
+
| 1.728 | 162000 | 0.0965 |
|
| 626 |
+
| 1.7333 | 162500 | 0.1121 |
|
| 627 |
+
| 1.7387 | 163000 | 0.0794 |
|
| 628 |
+
| 1.744 | 163500 | 0.0969 |
|
| 629 |
+
| 1.7493 | 164000 | 0.0696 |
|
| 630 |
+
| 1.7547 | 164500 | 0.083 |
|
| 631 |
+
| 1.76 | 165000 | 0.0702 |
|
| 632 |
+
| 1.7653 | 165500 | 0.0768 |
|
| 633 |
+
| 1.7707 | 166000 | 0.0632 |
|
| 634 |
+
| 1.776 | 166500 | 0.0714 |
|
| 635 |
+
| 1.7813 | 167000 | 0.1 |
|
| 636 |
+
| 1.7867 | 167500 | 0.0665 |
|
| 637 |
+
| 1.792 | 168000 | 0.1139 |
|
| 638 |
+
| 1.7973 | 168500 | 0.1032 |
|
| 639 |
+
| 1.8027 | 169000 | 0.0983 |
|
| 640 |
+
| 1.808 | 169500 | 0.0812 |
|
| 641 |
+
| 1.8133 | 170000 | 0.0996 |
|
| 642 |
+
| 1.8187 | 170500 | 0.0872 |
|
| 643 |
+
| 1.8240 | 171000 | 0.0612 |
|
| 644 |
+
| 1.8293 | 171500 | 0.1038 |
|
| 645 |
+
| 1.8347 | 172000 | 0.0558 |
|
| 646 |
+
| 1.8400 | 172500 | 0.0595 |
|
| 647 |
+
| 1.8453 | 173000 | 0.0558 |
|
| 648 |
+
| 1.8507 | 173500 | 0.0717 |
|
| 649 |
+
| 1.8560 | 174000 | 0.058 |
|
| 650 |
+
| 1.8613 | 174500 | 0.0745 |
|
| 651 |
+
| 1.8667 | 175000 | 0.0749 |
|
| 652 |
+
| 1.8720 | 175500 | 0.074 |
|
| 653 |
+
| 1.8773 | 176000 | 0.0792 |
|
| 654 |
+
| 1.8827 | 176500 | 0.0574 |
|
| 655 |
+
| 1.888 | 177000 | 0.0968 |
|
| 656 |
+
| 1.8933 | 177500 | 0.0755 |
|
| 657 |
+
| 1.8987 | 178000 | 0.0852 |
|
| 658 |
+
| 1.904 | 178500 | 0.0502 |
|
| 659 |
+
| 1.9093 | 179000 | 0.0699 |
|
| 660 |
+
| 1.9147 | 179500 | 0.0793 |
|
| 661 |
+
| 1.92 | 180000 | 0.113 |
|
| 662 |
+
| 1.9253 | 180500 | 0.0708 |
|
| 663 |
+
| 1.9307 | 181000 | 0.0815 |
|
| 664 |
+
| 1.936 | 181500 | 0.0962 |
|
| 665 |
+
| 1.9413 | 182000 | 0.083 |
|
| 666 |
+
| 1.9467 | 182500 | 0.0761 |
|
| 667 |
+
| 1.952 | 183000 | 0.0776 |
|
| 668 |
+
| 1.9573 | 183500 | 0.0811 |
|
| 669 |
+
| 1.9627 | 184000 | 0.1159 |
|
| 670 |
+
| 1.968 | 184500 | 0.081 |
|
| 671 |
+
| 1.9733 | 185000 | 0.146 |
|
| 672 |
+
| 1.9787 | 185500 | 0.0715 |
|
| 673 |
+
| 1.984 | 186000 | 0.12 |
|
| 674 |
+
| 1.9893 | 186500 | 0.0692 |
|
| 675 |
+
| 1.9947 | 187000 | 0.07 |
|
| 676 |
+
| 2.0 | 187500 | 0.0935 |
|
| 677 |
+
| 2.0053 | 188000 | 0.0848 |
|
| 678 |
+
| 2.0107 | 188500 | 0.0474 |
|
| 679 |
+
| 2.016 | 189000 | 0.0417 |
|
| 680 |
+
| 2.0213 | 189500 | 0.04 |
|
| 681 |
+
| 2.0267 | 190000 | 0.1139 |
|
| 682 |
+
| 2.032 | 190500 | 0.0553 |
|
| 683 |
+
| 2.0373 | 191000 | 0.0495 |
|
| 684 |
+
| 2.0427 | 191500 | 0.0613 |
|
| 685 |
+
| 2.048 | 192000 | 0.0379 |
|
| 686 |
+
| 2.0533 | 192500 | 0.0487 |
|
| 687 |
+
| 2.0587 | 193000 | 0.0417 |
|
| 688 |
+
| 2.064 | 193500 | 0.0249 |
|
| 689 |
+
| 2.0693 | 194000 | 0.0418 |
|
| 690 |
+
| 2.0747 | 194500 | 0.043 |
|
| 691 |
+
| 2.08 | 195000 | 0.051 |
|
| 692 |
+
| 2.0853 | 195500 | 0.0339 |
|
| 693 |
+
| 2.0907 | 196000 | 0.0519 |
|
| 694 |
+
| 2.096 | 196500 | 0.0878 |
|
| 695 |
+
| 2.1013 | 197000 | 0.0432 |
|
| 696 |
+
| 2.1067 | 197500 | 0.0185 |
|
| 697 |
+
| 2.112 | 198000 | 0.085 |
|
| 698 |
+
| 2.1173 | 198500 | 0.0601 |
|
| 699 |
+
| 2.1227 | 199000 | 0.0935 |
|
| 700 |
+
| 2.128 | 199500 | 0.0538 |
|
| 701 |
+
| 2.1333 | 200000 | 0.0445 |
|
| 702 |
+
| 2.1387 | 200500 | 0.0499 |
|
| 703 |
+
| 2.144 | 201000 | 0.1029 |
|
| 704 |
+
| 2.1493 | 201500 | 0.0758 |
|
| 705 |
+
| 2.1547 | 202000 | 0.0648 |
|
| 706 |
+
| 2.16 | 202500 | 0.0612 |
|
| 707 |
+
| 2.1653 | 203000 | 0.0618 |
|
| 708 |
+
| 2.1707 | 203500 | 0.0566 |
|
| 709 |
+
| 2.176 | 204000 | 0.0179 |
|
| 710 |
+
| 2.1813 | 204500 | 0.0557 |
|
| 711 |
+
| 2.1867 | 205000 | 0.0321 |
|
| 712 |
+
| 2.192 | 205500 | 0.0562 |
|
| 713 |
+
| 2.1973 | 206000 | 0.0673 |
|
| 714 |
+
| 2.2027 | 206500 | 0.0286 |
|
| 715 |
+
| 2.208 | 207000 | 0.0284 |
|
| 716 |
+
| 2.2133 | 207500 | 0.0595 |
|
| 717 |
+
| 2.2187 | 208000 | 0.0693 |
|
| 718 |
+
| 2.224 | 208500 | 0.065 |
|
| 719 |
+
| 2.2293 | 209000 | 0.0546 |
|
| 720 |
+
| 2.2347 | 209500 | 0.0467 |
|
| 721 |
+
| 2.24 | 210000 | 0.0353 |
|
| 722 |
+
| 2.2453 | 210500 | 0.0475 |
|
| 723 |
+
| 2.2507 | 211000 | 0.0451 |
|
| 724 |
+
| 2.2560 | 211500 | 0.0348 |
|
| 725 |
+
| 2.2613 | 212000 | 0.031 |
|
| 726 |
+
| 2.2667 | 212500 | 0.0294 |
|
| 727 |
+
| 2.2720 | 213000 | 0.0462 |
|
| 728 |
+
| 2.2773 | 213500 | 0.0376 |
|
| 729 |
+
| 2.2827 | 214000 | 0.0607 |
|
| 730 |
+
| 2.288 | 214500 | 0.041 |
|
| 731 |
+
| 2.2933 | 215000 | 0.0462 |
|
| 732 |
+
| 2.2987 | 215500 | 0.0285 |
|
| 733 |
+
| 2.304 | 216000 | 0.0177 |
|
| 734 |
+
| 2.3093 | 216500 | 0.0577 |
|
| 735 |
+
| 2.3147 | 217000 | 0.0368 |
|
| 736 |
+
| 2.32 | 217500 | 0.041 |
|
| 737 |
+
| 2.3253 | 218000 | 0.0469 |
|
| 738 |
+
| 2.3307 | 218500 | 0.0669 |
|
| 739 |
+
| 2.336 | 219000 | 0.0288 |
|
| 740 |
+
| 2.3413 | 219500 | 0.0283 |
|
| 741 |
+
| 2.3467 | 220000 | 0.0293 |
|
| 742 |
+
| 2.352 | 220500 | 0.0364 |
|
| 743 |
+
| 2.3573 | 221000 | 0.0431 |
|
| 744 |
+
| 2.3627 | 221500 | 0.0478 |
|
| 745 |
+
| 2.368 | 222000 | 0.0223 |
|
| 746 |
+
| 2.3733 | 222500 | 0.0464 |
|
| 747 |
+
| 2.3787 | 223000 | 0.0598 |
|
| 748 |
+
| 2.384 | 223500 | 0.0716 |
|
| 749 |
+
| 2.3893 | 224000 | 0.0445 |
|
| 750 |
+
| 2.3947 | 224500 | 0.0356 |
|
| 751 |
+
| 2.4 | 225000 | 0.0344 |
|
| 752 |
+
| 2.4053 | 225500 | 0.0729 |
|
| 753 |
+
| 2.4107 | 226000 | 0.0256 |
|
| 754 |
+
| 2.416 | 226500 | 0.0383 |
|
| 755 |
+
| 2.4213 | 227000 | 0.0445 |
|
| 756 |
+
| 2.4267 | 227500 | 0.0286 |
|
| 757 |
+
| 2.432 | 228000 | 0.0216 |
|
| 758 |
+
| 2.4373 | 228500 | 0.0299 |
|
| 759 |
+
| 2.4427 | 229000 | 0.0674 |
|
| 760 |
+
| 2.448 | 229500 | 0.0353 |
|
| 761 |
+
| 2.4533 | 230000 | 0.0403 |
|
| 762 |
+
| 2.4587 | 230500 | 0.0693 |
|
| 763 |
+
| 2.464 | 231000 | 0.0701 |
|
| 764 |
+
| 2.4693 | 231500 | 0.0506 |
|
| 765 |
+
| 2.4747 | 232000 | 0.0374 |
|
| 766 |
+
| 2.48 | 232500 | 0.0511 |
|
| 767 |
+
| 2.4853 | 233000 | 0.047 |
|
| 768 |
+
| 2.4907 | 233500 | 0.0231 |
|
| 769 |
+
| 2.496 | 234000 | 0.0513 |
|
| 770 |
+
| 2.5013 | 234500 | 0.0955 |
|
| 771 |
+
| 2.5067 | 235000 | 0.049 |
|
| 772 |
+
| 2.512 | 235500 | 0.048 |
|
| 773 |
+
| 2.5173 | 236000 | 0.0302 |
|
| 774 |
+
| 2.5227 | 236500 | 0.0207 |
|
| 775 |
+
| 2.528 | 237000 | 0.0357 |
|
| 776 |
+
| 2.5333 | 237500 | 0.0297 |
|
| 777 |
+
| 2.5387 | 238000 | 0.0554 |
|
| 778 |
+
| 2.544 | 238500 | 0.0386 |
|
| 779 |
+
| 2.5493 | 239000 | 0.0249 |
|
| 780 |
+
| 2.5547 | 239500 | 0.0432 |
|
| 781 |
+
| 2.56 | 240000 | 0.0539 |
|
| 782 |
+
| 2.5653 | 240500 | 0.0348 |
|
| 783 |
+
| 2.5707 | 241000 | 0.0233 |
|
| 784 |
+
| 2.576 | 241500 | 0.0702 |
|
| 785 |
+
| 2.5813 | 242000 | 0.0393 |
|
| 786 |
+
| 2.5867 | 242500 | 0.0625 |
|
| 787 |
+
| 2.592 | 243000 | 0.0197 |
|
| 788 |
+
| 2.5973 | 243500 | 0.0399 |
|
| 789 |
+
| 2.6027 | 244000 | 0.0495 |
|
| 790 |
+
| 2.608 | 244500 | 0.0407 |
|
| 791 |
+
| 2.6133 | 245000 | 0.0412 |
|
| 792 |
+
| 2.6187 | 245500 | 0.0234 |
|
| 793 |
+
| 2.624 | 246000 | 0.0559 |
|
| 794 |
+
| 2.6293 | 246500 | 0.0555 |
|
| 795 |
+
| 2.6347 | 247000 | 0.0328 |
|
| 796 |
+
| 2.64 | 247500 | 0.0375 |
|
| 797 |
+
| 2.6453 | 248000 | 0.0257 |
|
| 798 |
+
| 2.6507 | 248500 | 0.0212 |
|
| 799 |
+
| 2.656 | 249000 | 0.0633 |
|
| 800 |
+
| 2.6613 | 249500 | 0.0268 |
|
| 801 |
+
| 2.6667 | 250000 | 0.0354 |
|
| 802 |
+
| 2.672 | 250500 | 0.0341 |
|
| 803 |
+
| 2.6773 | 251000 | 0.0337 |
|
| 804 |
+
| 2.6827 | 251500 | 0.0519 |
|
| 805 |
+
| 2.6880 | 252000 | 0.0386 |
|
| 806 |
+
| 2.6933 | 252500 | 0.0603 |
|
| 807 |
+
| 2.6987 | 253000 | 0.0358 |
|
| 808 |
+
| 2.7040 | 253500 | 0.0352 |
|
| 809 |
+
| 2.7093 | 254000 | 0.0448 |
|
| 810 |
+
| 2.7147 | 254500 | 0.037 |
|
| 811 |
+
| 2.7200 | 255000 | 0.0375 |
|
| 812 |
+
| 2.7253 | 255500 | 0.04 |
|
| 813 |
+
| 2.7307 | 256000 | 0.0729 |
|
| 814 |
+
| 2.7360 | 256500 | 0.0246 |
|
| 815 |
+
| 2.7413 | 257000 | 0.045 |
|
| 816 |
+
| 2.7467 | 257500 | 0.0333 |
|
| 817 |
+
| 2.752 | 258000 | 0.0212 |
|
| 818 |
+
| 2.7573 | 258500 | 0.0458 |
|
| 819 |
+
| 2.7627 | 259000 | 0.048 |
|
| 820 |
+
| 2.768 | 259500 | 0.0287 |
|
| 821 |
+
| 2.7733 | 260000 | 0.0345 |
|
| 822 |
+
| 2.7787 | 260500 | 0.0459 |
|
| 823 |
+
| 2.784 | 261000 | 0.0449 |
|
| 824 |
+
| 2.7893 | 261500 | 0.0518 |
|
| 825 |
+
| 2.7947 | 262000 | 0.0433 |
|
| 826 |
+
| 2.8 | 262500 | 0.0572 |
|
| 827 |
+
| 2.8053 | 263000 | 0.0357 |
|
| 828 |
+
| 2.8107 | 263500 | 0.0394 |
|
| 829 |
+
| 2.816 | 264000 | 0.0531 |
|
| 830 |
+
| 2.8213 | 264500 | 0.0294 |
|
| 831 |
+
| 2.8267 | 265000 | 0.039 |
|
| 832 |
+
| 2.832 | 265500 | 0.0505 |
|
| 833 |
+
| 2.8373 | 266000 | 0.0167 |
|
| 834 |
+
| 2.8427 | 266500 | 0.031 |
|
| 835 |
+
| 2.848 | 267000 | 0.0362 |
|
| 836 |
+
| 2.8533 | 267500 | 0.0246 |
|
| 837 |
+
| 2.8587 | 268000 | 0.0317 |
|
| 838 |
+
| 2.864 | 268500 | 0.0296 |
|
| 839 |
+
| 2.8693 | 269000 | 0.0297 |
|
| 840 |
+
| 2.8747 | 269500 | 0.0517 |
|
| 841 |
+
| 2.88 | 270000 | 0.019 |
|
| 842 |
+
| 2.8853 | 270500 | 0.0358 |
|
| 843 |
+
| 2.8907 | 271000 | 0.0589 |
|
| 844 |
+
| 2.896 | 271500 | 0.031 |
|
| 845 |
+
| 2.9013 | 272000 | 0.0421 |
|
| 846 |
+
| 2.9067 | 272500 | 0.0422 |
|
| 847 |
+
| 2.912 | 273000 | 0.016 |
|
| 848 |
+
| 2.9173 | 273500 | 0.0645 |
|
| 849 |
+
| 2.9227 | 274000 | 0.0514 |
|
| 850 |
+
| 2.928 | 274500 | 0.0173 |
|
| 851 |
+
| 2.9333 | 275000 | 0.0432 |
|
| 852 |
+
| 2.9387 | 275500 | 0.0594 |
|
| 853 |
+
| 2.944 | 276000 | 0.0228 |
|
| 854 |
+
| 2.9493 | 276500 | 0.0152 |
|
| 855 |
+
| 2.9547 | 277000 | 0.0579 |
|
| 856 |
+
| 2.96 | 277500 | 0.0578 |
|
| 857 |
+
| 2.9653 | 278000 | 0.0246 |
|
| 858 |
+
| 2.9707 | 278500 | 0.0609 |
|
| 859 |
+
| 2.976 | 279000 | 0.0613 |
|
| 860 |
+
| 2.9813 | 279500 | 0.0589 |
|
| 861 |
+
| 2.9867 | 280000 | 0.047 |
|
| 862 |
+
| 2.992 | 280500 | 0.0264 |
|
| 863 |
+
| 2.9973 | 281000 | 0.0464 |
|
| 864 |
+
|
| 865 |
+
</details>
|
| 866 |
+
|
| 867 |
+
### Framework Versions
|
| 868 |
+
- Python: 3.10.12
|
| 869 |
+
- Sentence Transformers: 3.3.0
|
| 870 |
+
- Transformers: 4.46.3
|
| 871 |
+
- PyTorch: 2.5.1+cu124
|
| 872 |
+
- Accelerate: 1.1.1
|
| 873 |
+
- Datasets: 3.2.0
|
| 874 |
+
- Tokenizers: 0.20.3
|
| 875 |
+
|
| 876 |
+
## Citation
|
| 877 |
+
|
| 878 |
+
### BibTeX
|
| 879 |
+
|
| 880 |
+
#### Sentence Transformers
|
| 881 |
+
```bibtex
|
| 882 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 883 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 884 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 885 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 886 |
+
month = "11",
|
| 887 |
+
year = "2019",
|
| 888 |
+
publisher = "Association for Computational Linguistics",
|
| 889 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 890 |
+
}
|
| 891 |
+
```
|
| 892 |
+
|
| 893 |
+
#### CoSENTLoss
|
| 894 |
+
```bibtex
|
| 895 |
+
@online{kexuefm-8847,
|
| 896 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 897 |
+
author={Su Jianlin},
|
| 898 |
+
year={2022},
|
| 899 |
+
month={Jan},
|
| 900 |
+
url={https://kexue.fm/archives/8847},
|
| 901 |
+
}
|
| 902 |
+
```
|
| 903 |
+
|
| 904 |
+
<!--
|
| 905 |
+
## Glossary
|
| 906 |
+
|
| 907 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 908 |
+
-->
|
| 909 |
+
|
| 910 |
+
<!--
|
| 911 |
+
## Model Card Authors
|
| 912 |
+
|
| 913 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 914 |
+
-->
|
| 915 |
+
|
| 916 |
+
<!--
|
| 917 |
+
## Model Card Contact
|
| 918 |
+
|
| 919 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 920 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "agentlans/multilingual-e5-small-aligned",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.46.3",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 250037
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.0",
|
| 4 |
+
"transformers": "4.46.3",
|
| 5 |
+
"pytorch": "2.5.1+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58a5060c9e53df86bebcc6edca2ace1f23d8712da538a83e609eb25b1dc1d8a3
|
| 3 |
+
size 470637416
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
|
| 3 |
+
size 17083053
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"mask_token": "<mask>",
|
| 49 |
+
"max_length": 512,
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"pad_to_multiple_of": null,
|
| 52 |
+
"pad_token": "<pad>",
|
| 53 |
+
"pad_token_type_id": 0,
|
| 54 |
+
"padding_side": "right",
|
| 55 |
+
"sep_token": "</s>",
|
| 56 |
+
"sp_model_kwargs": {},
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|