ASA commited on
Commit
0d830bd
·
verified ·
1 Parent(s): 9161b54

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1 -33
README.md CHANGED
@@ -14,37 +14,5 @@ pipeline_tag: summarization
14
 
15
  # Meeting-Mind: Meeting Summarization Model
16
 
17
- This model was fine-tuned on the SAMSum dataset to generate concise summaries of meeting transcripts.
18
  It uses a BART base model with 2 epochs of training.
19
-
20
- ## Model Description
21
-
22
- - **Model type:** BART fine-tuned for abstractive summarization
23
- - **Language:** English
24
- - **Training data:** SAMSum dataset
25
- - **Metrics:** ROUGE-1: 54.52, ROUGE-2: 30.88, ROUGE-L: 45.09
26
-
27
- ## Usage
28
-
29
- ```python
30
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
31
-
32
- model = AutoModelForSeq2SeqLM.from_pretrained("ASQWADSda/meeting-summarizer")
33
- tokenizer = AutoTokenizer.from_pretrained("ASQWADSda/meeting-summarizer")
34
-
35
- meeting_transcript = '''
36
- John: Welcome everyone to our weekly product planning meeting.
37
- Sarah: Thanks John. I've prepared the updated roadmap for Q3.
38
- ...
39
- '''
40
-
41
- inputs = tokenizer(meeting_transcript, max_length=512, truncation=True, return_tensors="pt")
42
- outputs = model.generate(inputs.input_ids, max_length=128, num_beams=4)
43
- summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
44
- print(summary)
45
- ```
46
-
47
- ## Limitations
48
-
49
- This model works best on conversational meeting transcripts with clear speaker attribution.
50
- It may not perform as well on formal speeches or presentations.
 
14
 
15
  # Meeting-Mind: Meeting Summarization Model
16
 
17
+ This model was fine-tuned on the SAMSum dataset to generate concise summaries of meeting transcripts.
18
  It uses a BART base model with 2 epochs of training.