---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9014210
- loss:MSELoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
as one person in a yellow Chinese dragon costume confronts the camera.
sentences:
- Boy dressed in blue holds a toy.
- the animal is running
- Two young asian men are squatting.
- source_sentence: A man with a shopping cart is studying the shelves in a supermarket
aisle.
sentences:
- The children are watching TV at home.
- Three young boys one is holding a camera and another is holding a green toy all
are wearing t-shirt and smiling.
- A large group of people are gathered outside of a brick building lit with spotlights.
- source_sentence: The door is open.
sentences:
- There are three men in this picture, two are on motorbikes, one of the men has
a large piece of furniture on the back of his bike, the other is about to be handed
a piece of paper by a man in a white shirt.
- People are playing music.
- A girl is using an apple laptop with her headphones in her ears.
- source_sentence: A small group of children are standing in a classroom and one of
them has a foot in a trashcan, which also has a rope leading out of it.
sentences:
- Children are swimming at the beach.
- Women are celebrating at a bar.
- Some men with jerseys are in a bar, watching a soccer match.
- source_sentence: A black dog is drinking next to a brown and white dog that is looking
at an orange ball in the lake, whilst a horse and rider passes behind.
sentences:
- There are two people running around a track in lane three and the one wearing
a blue shirt with a green thing over the eyes is just barely ahead of the guy
wearing an orange shirt and sunglasses.
- A girl is sitting
- the guy is dead
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- negative_mse
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8649118460865306
name: Pearson Cosine
- type: spearman_cosine
value: 0.864870367786895
name: Spearman Cosine
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -0.024522081366740167
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8202873084532003
name: Pearson Cosine
- type: spearman_cosine
value: 0.8190218550432983
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aleynahukmet/all-MiniLM-L6-v2-8-layers")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
'the guy is dead',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:----------|
| pearson_cosine | 0.8649 | 0.8203 |
| **spearman_cosine** | **0.8649** | **0.819** |
#### Knowledge Distillation
* Evaluated with [MSEEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:------------|
| **negative_mse** | **-0.0245** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 9,014,210 training samples
* Columns: sentence
and label
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details |
- min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
| |
* Samples:
| sentence | label |
|:---------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
| A person on a horse jumps over a broken down airplane.
| [-0.009216307662427425, 0.003964003175497055, 0.04029734805226326, 0.0030935262329876423, -0.03516044840216637, ...]
|
| Children smiling and waving at camera
| [-0.03215238079428673, 0.06086821109056473, 0.013251038268208504, -0.017755677923560143, 0.07927625626325607, ...]
|
| A boy is jumping on skateboard in the middle of a red bridge.
| [-0.020561737939715385, -0.03641558438539505, -0.039370208978652954, -0.0975518748164177, 0.005307587794959545, ...]
|
* Loss: [MSELoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 10,000 evaluation samples
* Columns: sentence
and label
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
| |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
| Two women are embracing while holding to go packages.
| [-0.007923883385956287, -0.024198176339268684, 0.034445445984601974, 0.036053989082574844, -0.06740871071815491, ...]
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| [-0.08869566023349762, 0.02789478376507759, 0.060685668140649796, -0.02580258436501026, 0.008359752595424652, ...]
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| [0.027255145832896233, 0.07622072845697403, 0.025504805147647858, -0.0542026124894619, -0.052822694182395935, ...]
|
* Loss: [MSELoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
|:---------:|:----------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
| 0 | 0 | - | - | 0.7048 | -0.3846 | - |
| 0.0071 | 1000 | 0.0032 | - | - | - | - |
| 0.0142 | 2000 | 0.0023 | - | - | - | - |
| 0.0213 | 3000 | 0.0019 | - | - | - | - |
| 0.0284 | 4000 | 0.0017 | - | - | - | - |
| 0.0355 | 5000 | 0.0015 | 0.0013 | 0.8149 | -0.1309 | - |
| 0.0426 | 6000 | 0.0014 | - | - | - | - |
| 0.0497 | 7000 | 0.0012 | - | - | - | - |
| 0.0568 | 8000 | 0.0011 | - | - | - | - |
| 0.0639 | 9000 | 0.001 | - | - | - | - |
| 0.0710 | 10000 | 0.001 | 0.0008 | 0.8495 | -0.0754 | - |
| 0.0781 | 11000 | 0.0009 | - | - | - | - |
| 0.0852 | 12000 | 0.0008 | - | - | - | - |
| 0.0923 | 13000 | 0.0008 | - | - | - | - |
| 0.0994 | 14000 | 0.0007 | - | - | - | - |
| 0.1065 | 15000 | 0.0007 | 0.0005 | 0.8569 | -0.0528 | - |
| 0.1136 | 16000 | 0.0007 | - | - | - | - |
| 0.1207 | 17000 | 0.0007 | - | - | - | - |
| 0.1278 | 18000 | 0.0006 | - | - | - | - |
| 0.1349 | 19000 | 0.0006 | - | - | - | - |
| 0.1420 | 20000 | 0.0006 | 0.0004 | 0.8589 | -0.0438 | - |
| 0.1491 | 21000 | 0.0006 | - | - | - | - |
| 0.1562 | 22000 | 0.0006 | - | - | - | - |
| 0.1633 | 23000 | 0.0006 | - | - | - | - |
| 0.1704 | 24000 | 0.0006 | - | - | - | - |
| 0.1775 | 25000 | 0.0005 | 0.0004 | 0.8608 | -0.0392 | - |
| 0.1846 | 26000 | 0.0005 | - | - | - | - |
| 0.1917 | 27000 | 0.0005 | - | - | - | - |
| 0.1988 | 28000 | 0.0005 | - | - | - | - |
| 0.2059 | 29000 | 0.0005 | - | - | - | - |
| 0.2130 | 30000 | 0.0005 | 0.0004 | 0.8619 | -0.0363 | - |
| 0.2201 | 31000 | 0.0005 | - | - | - | - |
| 0.2272 | 32000 | 0.0005 | - | - | - | - |
| 0.2343 | 33000 | 0.0005 | - | - | - | - |
| 0.2414 | 34000 | 0.0005 | - | - | - | - |
| 0.2485 | 35000 | 0.0005 | 0.0003 | 0.8619 | -0.0343 | - |
| 0.2556 | 36000 | 0.0005 | - | - | - | - |
| 0.2627 | 37000 | 0.0005 | - | - | - | - |
| 0.2698 | 38000 | 0.0005 | - | - | - | - |
| 0.2769 | 39000 | 0.0005 | - | - | - | - |
| 0.2840 | 40000 | 0.0005 | 0.0003 | 0.8613 | -0.0329 | - |
| 0.2911 | 41000 | 0.0005 | - | - | - | - |
| 0.2982 | 42000 | 0.0005 | - | - | - | - |
| 0.3053 | 43000 | 0.0005 | - | - | - | - |
| 0.3124 | 44000 | 0.0005 | - | - | - | - |
| 0.3195 | 45000 | 0.0005 | 0.0003 | 0.8633 | -0.0316 | - |
| 0.3266 | 46000 | 0.0005 | - | - | - | - |
| 0.3337 | 47000 | 0.0005 | - | - | - | - |
| 0.3408 | 48000 | 0.0005 | - | - | - | - |
| 0.3479 | 49000 | 0.0004 | - | - | - | - |
| 0.3550 | 50000 | 0.0004 | 0.0003 | 0.8631 | -0.0306 | - |
| 0.3621 | 51000 | 0.0004 | - | - | - | - |
| 0.3692 | 52000 | 0.0004 | - | - | - | - |
| 0.3763 | 53000 | 0.0004 | - | - | - | - |
| 0.3834 | 54000 | 0.0004 | - | - | - | - |
| 0.3905 | 55000 | 0.0004 | 0.0003 | 0.8635 | -0.0297 | - |
| 0.3976 | 56000 | 0.0004 | - | - | - | - |
| 0.4047 | 57000 | 0.0004 | - | - | - | - |
| 0.4118 | 58000 | 0.0004 | - | - | - | - |
| 0.4189 | 59000 | 0.0004 | - | - | - | - |
| 0.4260 | 60000 | 0.0004 | 0.0003 | 0.8640 | -0.0290 | - |
| 0.4331 | 61000 | 0.0004 | - | - | - | - |
| 0.4402 | 62000 | 0.0004 | - | - | - | - |
| 0.4473 | 63000 | 0.0004 | - | - | - | - |
| 0.4544 | 64000 | 0.0004 | - | - | - | - |
| 0.4615 | 65000 | 0.0004 | 0.0003 | 0.8644 | -0.0285 | - |
| 0.4686 | 66000 | 0.0004 | - | - | - | - |
| 0.4757 | 67000 | 0.0004 | - | - | - | - |
| 0.4828 | 68000 | 0.0004 | - | - | - | - |
| 0.4899 | 69000 | 0.0004 | - | - | - | - |
| 0.4970 | 70000 | 0.0004 | 0.0003 | 0.8641 | -0.0280 | - |
| 0.5041 | 71000 | 0.0004 | - | - | - | - |
| 0.5112 | 72000 | 0.0004 | - | - | - | - |
| 0.5183 | 73000 | 0.0004 | - | - | - | - |
| 0.5254 | 74000 | 0.0004 | - | - | - | - |
| 0.5325 | 75000 | 0.0004 | 0.0003 | 0.8648 | -0.0276 | - |
| 0.5396 | 76000 | 0.0004 | - | - | - | - |
| 0.5467 | 77000 | 0.0004 | - | - | - | - |
| 0.5538 | 78000 | 0.0004 | - | - | - | - |
| 0.5609 | 79000 | 0.0004 | - | - | - | - |
| 0.5680 | 80000 | 0.0004 | 0.0003 | 0.8644 | -0.0271 | - |
| 0.5751 | 81000 | 0.0004 | - | - | - | - |
| 0.5822 | 82000 | 0.0004 | - | - | - | - |
| 0.5893 | 83000 | 0.0004 | - | - | - | - |
| 0.5964 | 84000 | 0.0004 | - | - | - | - |
| 0.6035 | 85000 | 0.0004 | 0.0003 | 0.8648 | -0.0267 | - |
| 0.6106 | 86000 | 0.0004 | - | - | - | - |
| 0.6177 | 87000 | 0.0004 | - | - | - | - |
| 0.6248 | 88000 | 0.0004 | - | - | - | - |
| 0.6319 | 89000 | 0.0004 | - | - | - | - |
| 0.6390 | 90000 | 0.0004 | 0.0003 | 0.8645 | -0.0264 | - |
| 0.6461 | 91000 | 0.0004 | - | - | - | - |
| 0.6532 | 92000 | 0.0004 | - | - | - | - |
| 0.6603 | 93000 | 0.0004 | - | - | - | - |
| 0.6674 | 94000 | 0.0004 | - | - | - | - |
| 0.6745 | 95000 | 0.0004 | 0.0003 | 0.8643 | -0.0261 | - |
| 0.6816 | 96000 | 0.0004 | - | - | - | - |
| 0.6887 | 97000 | 0.0004 | - | - | - | - |
| 0.6958 | 98000 | 0.0004 | - | - | - | - |
| 0.7029 | 99000 | 0.0004 | - | - | - | - |
| 0.7100 | 100000 | 0.0004 | 0.0003 | 0.8643 | -0.0259 | - |
| 0.7171 | 101000 | 0.0004 | - | - | - | - |
| 0.7242 | 102000 | 0.0004 | - | - | - | - |
| 0.7313 | 103000 | 0.0004 | - | - | - | - |
| 0.7384 | 104000 | 0.0004 | - | - | - | - |
| 0.7455 | 105000 | 0.0004 | 0.0003 | 0.8646 | -0.0257 | - |
| 0.7526 | 106000 | 0.0004 | - | - | - | - |
| 0.7597 | 107000 | 0.0004 | - | - | - | - |
| 0.7668 | 108000 | 0.0004 | - | - | - | - |
| 0.7739 | 109000 | 0.0004 | - | - | - | - |
| 0.7810 | 110000 | 0.0004 | 0.0003 | 0.8637 | -0.0254 | - |
| 0.7881 | 111000 | 0.0004 | - | - | - | - |
| 0.7952 | 112000 | 0.0004 | - | - | - | - |
| 0.8023 | 113000 | 0.0004 | - | - | - | - |
| 0.8094 | 114000 | 0.0004 | - | - | - | - |
| 0.8165 | 115000 | 0.0004 | 0.0003 | 0.8643 | -0.0252 | - |
| 0.8236 | 116000 | 0.0004 | - | - | - | - |
| 0.8307 | 117000 | 0.0004 | - | - | - | - |
| 0.8378 | 118000 | 0.0004 | - | - | - | - |
| 0.8449 | 119000 | 0.0004 | - | - | - | - |
| 0.8520 | 120000 | 0.0004 | 0.0003 | 0.8645 | -0.0250 | - |
| 0.8591 | 121000 | 0.0004 | - | - | - | - |
| 0.8662 | 122000 | 0.0004 | - | - | - | - |
| 0.8733 | 123000 | 0.0004 | - | - | - | - |
| 0.8804 | 124000 | 0.0004 | - | - | - | - |
| 0.8875 | 125000 | 0.0004 | 0.0002 | 0.8646 | -0.0248 | - |
| 0.8946 | 126000 | 0.0004 | - | - | - | - |
| 0.9017 | 127000 | 0.0004 | - | - | - | - |
| 0.9088 | 128000 | 0.0004 | - | - | - | - |
| 0.9159 | 129000 | 0.0004 | - | - | - | - |
| 0.9230 | 130000 | 0.0004 | 0.0002 | 0.8647 | -0.0247 | - |
| 0.9301 | 131000 | 0.0004 | - | - | - | - |
| 0.9372 | 132000 | 0.0004 | - | - | - | - |
| 0.9443 | 133000 | 0.0004 | - | - | - | - |
| 0.9514 | 134000 | 0.0004 | - | - | - | - |
| 0.9585 | 135000 | 0.0004 | 0.0002 | 0.8646 | -0.0246 | - |
| 0.9656 | 136000 | 0.0004 | - | - | - | - |
| 0.9727 | 137000 | 0.0004 | - | - | - | - |
| 0.9798 | 138000 | 0.0004 | - | - | - | - |
| 0.9869 | 139000 | 0.0004 | - | - | - | - |
| **0.994** | **140000** | **0.0004** | **0.0002** | **0.8649** | **-0.0245** | **-** |
| 1.0 | 140848 | - | - | - | - | 0.8190 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```