File size: 3,091 Bytes
68f2d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import torch
from PIL import Image
import numpy as np
from transformers import AutoModel, AutoConfig
from model import Pix2TextModel, Pix2TextConfig
import os

# Model yükleme fonksiyonu
def load_model():
    try:
        # Hugging Face'den model yükle
        config = AutoConfig.from_pretrained("./", trust_remote_code=True)
        model = AutoModel.from_pretrained("./", trust_remote_code=True)
        return model
    except Exception as e:
        print(f"Model yükleme hatası: {e}")
        # Yerel model oluştur
        config = Pix2TextConfig()
        model = Pix2TextModel(config)
        return model

model = load_model()

def predict_text(image):
    """Görüntüden metin çıkarma fonksiyonu"""
    try:
        if image is None:
            return "Lütfen bir görüntü yükleyin."
        
        # PIL Image'a çevir
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        
        # Model ile tahmin yap
        result = model.predict(image)
        
        return f"Çıkarılan Metin: {result}"
    
    except Exception as e:
        return f"Hata oluştu: {str(e)}"

def create_demo():
    """Gradio demo arayüzü oluştur"""
    
    with gr.Blocks(title="Pix2Text - Görüntüden Metin Çıkarma") as demo:
        gr.Markdown("# 🔤 Pix2Text Model Test Arayüzü")
        gr.Markdown("Görüntü yükleyerek metin çıkarma işlemini test edebilirsiniz.")
        
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(
                    label="Görüntü Yükleyin",
                    type="pil",
                    height=400
                )
                
                predict_btn = gr.Button("Metni Çıkar", variant="primary")
                
            with gr.Column():
                output_text = gr.Textbox(
                    label="Çıkarılan Metin",
                    lines=10,
                    placeholder="Sonuç burada görünecek..."
                )
        
        # Event handlers
        predict_btn.click(
            fn=predict_text,
            inputs=[image_input],
            outputs=[output_text]
        )
        
        # Örnek görüntüler
        gr.Examples(
            examples=[
                ["example1.jpg"],
                ["example2.png"]
            ],
            inputs=[image_input],
            outputs=[output_text],
            fn=predict_text,
            cache_examples=False
        )
        
        gr.Markdown("### Model Bilgileri")
        gr.Markdown("""

        - **Model Tipi**: Pix2Text (Görüntüden Metin Çıkarma)

        - **Framework**: PyTorch + Transformers

        - **Desteklenen Formatlar**: JPG, PNG, JPEG

        - **Maksimum Görüntü Boyutu**: 2048x2048 piksel

        """)
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )