update readme
Browse files- README.md +3 -1
- README_ZH.md +81 -0
README.md
CHANGED
|
@@ -18,6 +18,8 @@ pipeline_tag: text-to-image
|
|
| 18 |
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;">
|
| 19 |
</div>
|
| 20 |
|
|
|
|
|
|
|
| 21 |
This repository provides a 8-step distilled lora for [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) model released by AlimamaCreative Team.
|
| 22 |
|
| 23 |
# Description
|
|
@@ -69,7 +71,7 @@ image = pipe(
|
|
| 69 |
|
| 70 |
# Training Details
|
| 71 |
|
| 72 |
-
The model is trained on 1M open source and internal sources images, with the aesthetic 6.3+ and resolution greater than 800. We use adversarial training to improve the quality. Our method fix the original FLUX.1-dev transformer as the discriminator backbone, and add multi heads to every transformer layer. We fix the
|
| 73 |
|
| 74 |
Mixed precision: bf16
|
| 75 |
|
|
|
|
| 18 |
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;">
|
| 19 |
</div>
|
| 20 |
|
| 21 |
+
[中文版Readme](./README_ZH.md)
|
| 22 |
+
|
| 23 |
This repository provides a 8-step distilled lora for [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) model released by AlimamaCreative Team.
|
| 24 |
|
| 25 |
# Description
|
|
|
|
| 71 |
|
| 72 |
# Training Details
|
| 73 |
|
| 74 |
+
The model is trained on 1M open source and internal sources images, with the aesthetic 6.3+ and resolution greater than 800. We use adversarial training to improve the quality. Our method fix the original FLUX.1-dev transformer as the discriminator backbone, and add multi heads to every transformer layer. We fix the guidance scale as 3.5 during training, and use the time shift as 3.
|
| 75 |
|
| 76 |
Mixed precision: bf16
|
| 77 |
|
README_ZH.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: flux-1-dev-non-commercial-license
|
| 4 |
+
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model: black-forest-labs/FLUX.1-dev
|
| 8 |
+
library_name: diffusers
|
| 9 |
+
tags:
|
| 10 |
+
- Text-to-Image
|
| 11 |
+
- FLUX
|
| 12 |
+
- Stable Diffusion
|
| 13 |
+
pipeline_tag: text-to-image
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<div style="display: flex; justify-content: center; align-items: center;">
|
| 17 |
+
<img src="./images/images_alibaba.png" alt="alibaba" style="width: 20%; height: auto; margin-right: 5%;">
|
| 18 |
+
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;">
|
| 19 |
+
</div>
|
| 20 |
+
|
| 21 |
+
本仓库包含了由阿里妈妈创意团队开发的基于[FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)模型的8步蒸馏版。
|
| 22 |
+
|
| 23 |
+
# 介绍
|
| 24 |
+
|
| 25 |
+
该模型是基于FLUX.1-dev模型的8步蒸馏版lora。我们使用特殊设计的判别器来提高蒸馏质量。该模型可以用于T2I、Inpainting controlnet和其他FLUX相关模型。建议guidance_scale=3.5和lora_scale=1。我们的更低步数的版本将在后续发布。
|
| 26 |
+
|
| 27 |
+
- Text-to-Image.
|
| 28 |
+
|
| 29 |
+

|
| 30 |
+
|
| 31 |
+
- 配合[alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta](https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta)。我们模型可以很好地适配Inpainting controlnet,并与原始输出保持相似的结果。
|
| 32 |
+
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
# 使用指南
|
| 36 |
+
## diffusers
|
| 37 |
+
该模型可以直接与diffusers一起使用
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
import torch
|
| 41 |
+
from diffusers.pipelines import FluxPipeline
|
| 42 |
+
|
| 43 |
+
model_id = "black-forest-labs/FLUX.1-dev"
|
| 44 |
+
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
|
| 45 |
+
|
| 46 |
+
pipe = FluxPipeline.from_pretrained(
|
| 47 |
+
model_id,
|
| 48 |
+
torch_dtype=torch.bfloat16
|
| 49 |
+
)
|
| 50 |
+
pipe.to("cuda")
|
| 51 |
+
|
| 52 |
+
pipe.load_lora_weights(adapter_id)
|
| 53 |
+
pipe.fuse_lora()
|
| 54 |
+
|
| 55 |
+
prompt = "A DSLR photo of a shiny VW van that has a cityscape painted on it. A smiling sloth stands on grass in front of the van and is wearing a leather jacket, a cowboy hat, a kilt and a bowtie. The sloth is holding a quarterstaff and a big book."
|
| 56 |
+
image = pipe(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
guidance_scale=3.5,
|
| 59 |
+
height=1024,
|
| 60 |
+
width=1024,
|
| 61 |
+
num_inference_steps=8,
|
| 62 |
+
max_sequence_length=512).images[0]
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## comfyui
|
| 66 |
+
|
| 67 |
+
- 文生图加速链路: [点击这里](./workflows/t2I_flux_turbo.json)
|
| 68 |
+
- Inpainting controlnet 加速链路: [点击这里](./workflows/alimama_flux_inpainting_turbo_8step.json)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# 训练细节
|
| 72 |
+
|
| 73 |
+
该模型在1M公开数据集和内部源图片上进行训练,这些数据美学评分6.3+而且分辨率大于800。我们使用对抗训练来提高质量,我们的方法将原始FLUX.1-dev transformer固定为判别器的特征提取器,并在每个transformer层中添加判别头网络。在训练期间,我们将guidance scale固定为3.5,并使用时间偏移量3。
|
| 74 |
+
|
| 75 |
+
混合精度: bf16
|
| 76 |
+
|
| 77 |
+
学习率: 2e-5
|
| 78 |
+
|
| 79 |
+
批大小: 64
|
| 80 |
+
|
| 81 |
+
训练分辨率: 1024x1024
|