wav2vec2-large-xlsr-facebook-300m-texts-exp-1-v3
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3111
- Wer: 0.2054
- Cer: 0.1256
- Per: 0.1438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
|---|---|---|---|---|---|---|
| 30.7141 | 1.0 | 64 | 6.0700 | 1.0 | 0.9669 | 0.9490 |
| 9.8106 | 2.0 | 128 | 4.5365 | 1.0 | 0.9669 | 0.9490 |
| 9.8106 | 3.0 | 192 | 3.7057 | 1.0 | 0.9669 | 0.9490 |
| 4.1821 | 4.0 | 256 | 3.3083 | 1.0 | 0.9669 | 0.9490 |
| 3.3067 | 5.0 | 320 | 3.1071 | 1.0 | 0.9669 | 0.9490 |
| 3.3067 | 6.0 | 384 | 2.9889 | 1.0 | 0.9669 | 0.9490 |
| 3.0307 | 7.0 | 448 | 3.0288 | 1.0 | 0.9669 | 0.9490 |
| 2.9507 | 8.0 | 512 | 2.9394 | 1.0 | 0.9669 | 0.9490 |
| 2.9507 | 9.0 | 576 | 2.9221 | 1.0 | 0.9669 | 0.9490 |
| 2.9206 | 10.0 | 640 | 2.9265 | 1.0 | 0.9669 | 0.9490 |
| 2.9075 | 11.0 | 704 | 2.9086 | 1.0 | 0.9669 | 0.9490 |
| 2.9075 | 12.0 | 768 | 2.9013 | 1.0 | 0.9669 | 0.9490 |
| 2.8921 | 13.0 | 832 | 2.7855 | 1.0 | 0.9669 | 0.9490 |
| 2.8921 | 14.0 | 896 | 2.6278 | 0.9995 | 0.9575 | 0.9369 |
| 2.7616 | 15.0 | 960 | 2.2683 | 1.0 | 0.7442 | 0.6858 |
| 2.4093 | 16.0 | 1024 | 1.6545 | 0.9996 | 0.5047 | 0.4283 |
| 2.4093 | 17.0 | 1088 | 1.2827 | 0.9845 | 0.4038 | 0.3398 |
| 1.662 | 18.0 | 1152 | 1.0526 | 0.7691 | 0.3065 | 0.2964 |
| 1.1907 | 19.0 | 1216 | 0.8960 | 0.6197 | 0.2625 | 0.2762 |
| 1.1907 | 20.0 | 1280 | 0.8227 | 0.5743 | 0.2435 | 0.2584 |
| 0.937 | 21.0 | 1344 | 0.7483 | 0.5200 | 0.2269 | 0.2415 |
| 0.7646 | 22.0 | 1408 | 0.6610 | 0.4629 | 0.2072 | 0.2237 |
| 0.7646 | 23.0 | 1472 | 0.6110 | 0.4319 | 0.1960 | 0.2122 |
| 0.6454 | 24.0 | 1536 | 0.5567 | 0.3943 | 0.1836 | 0.2023 |
| 0.5484 | 25.0 | 1600 | 0.5099 | 0.3621 | 0.1724 | 0.1901 |
| 0.5484 | 26.0 | 1664 | 0.4765 | 0.3452 | 0.1675 | 0.1860 |
| 0.4782 | 27.0 | 1728 | 0.4610 | 0.3262 | 0.1634 | 0.1808 |
| 0.4782 | 28.0 | 1792 | 0.4397 | 0.3230 | 0.1596 | 0.1761 |
| 0.4136 | 29.0 | 1856 | 0.4399 | 0.2983 | 0.1563 | 0.1738 |
| 0.3701 | 30.0 | 1920 | 0.4074 | 0.2946 | 0.1522 | 0.1700 |
| 0.3701 | 31.0 | 1984 | 0.3943 | 0.2950 | 0.1497 | 0.1661 |
| 0.3285 | 32.0 | 2048 | 0.3919 | 0.2870 | 0.1482 | 0.1659 |
| 0.3313 | 33.0 | 2112 | 0.3668 | 0.2760 | 0.1449 | 0.1619 |
| 0.3313 | 34.0 | 2176 | 0.3656 | 0.2769 | 0.1433 | 0.1593 |
| 0.2808 | 35.0 | 2240 | 0.3716 | 0.2627 | 0.1427 | 0.1603 |
| 0.259 | 36.0 | 2304 | 0.3685 | 0.2523 | 0.1403 | 0.1584 |
| 0.259 | 37.0 | 2368 | 0.3401 | 0.2497 | 0.1378 | 0.1552 |
| 0.2561 | 38.0 | 2432 | 0.3509 | 0.2494 | 0.1386 | 0.1558 |
| 0.2561 | 39.0 | 2496 | 0.3486 | 0.2393 | 0.1361 | 0.1541 |
| 0.2457 | 40.0 | 2560 | 0.3513 | 0.2396 | 0.1366 | 0.1541 |
| 0.2291 | 41.0 | 2624 | 0.3400 | 0.2325 | 0.1345 | 0.1524 |
| 0.2291 | 42.0 | 2688 | 0.3312 | 0.2341 | 0.1346 | 0.1515 |
| 0.2023 | 43.0 | 2752 | 0.3463 | 0.2341 | 0.1351 | 0.1527 |
| 0.2108 | 44.0 | 2816 | 0.3328 | 0.2302 | 0.1328 | 0.1502 |
| 0.2108 | 45.0 | 2880 | 0.3300 | 0.2294 | 0.1338 | 0.1516 |
| 0.1989 | 46.0 | 2944 | 0.3178 | 0.2243 | 0.1318 | 0.1496 |
| 0.1798 | 47.0 | 3008 | 0.3283 | 0.2319 | 0.1332 | 0.1506 |
| 0.1798 | 48.0 | 3072 | 0.3262 | 0.2237 | 0.1313 | 0.1487 |
| 0.1717 | 49.0 | 3136 | 0.3253 | 0.2244 | 0.1317 | 0.1486 |
| 0.1655 | 50.0 | 3200 | 0.3451 | 0.2214 | 0.1319 | 0.1494 |
| 0.1655 | 51.0 | 3264 | 0.3346 | 0.2188 | 0.1305 | 0.1483 |
| 0.1634 | 52.0 | 3328 | 0.3453 | 0.2192 | 0.1305 | 0.1486 |
| 0.1634 | 53.0 | 3392 | 0.3242 | 0.2176 | 0.1294 | 0.1474 |
| 0.1529 | 54.0 | 3456 | 0.3405 | 0.2161 | 0.1307 | 0.1483 |
| 0.1516 | 55.0 | 3520 | 0.3347 | 0.2139 | 0.1291 | 0.1470 |
| 0.1516 | 56.0 | 3584 | 0.3403 | 0.2137 | 0.1283 | 0.1460 |
| 0.1371 | 57.0 | 3648 | 0.3159 | 0.2148 | 0.1280 | 0.1456 |
| 0.1391 | 58.0 | 3712 | 0.3213 | 0.2068 | 0.1272 | 0.1455 |
| 0.1391 | 59.0 | 3776 | 0.3230 | 0.2081 | 0.1281 | 0.1466 |
| 0.1294 | 60.0 | 3840 | 0.3207 | 0.2084 | 0.1274 | 0.1456 |
| 0.1307 | 61.0 | 3904 | 0.3214 | 0.2104 | 0.1277 | 0.1462 |
| 0.1307 | 62.0 | 3968 | 0.3111 | 0.2054 | 0.1256 | 0.1438 |
| 0.1187 | 63.0 | 4032 | 0.3153 | 0.2090 | 0.1264 | 0.1439 |
| 0.1187 | 64.0 | 4096 | 0.3141 | 0.2064 | 0.1259 | 0.1430 |
| 0.1308 | 65.0 | 4160 | 0.3231 | 0.2048 | 0.1257 | 0.1443 |
| 0.1274 | 66.0 | 4224 | 0.3157 | 0.2035 | 0.1250 | 0.1433 |
| 0.1274 | 67.0 | 4288 | 0.3136 | 0.2060 | 0.1255 | 0.1438 |
| 0.1112 | 68.0 | 4352 | 0.3281 | 0.2071 | 0.1257 | 0.1437 |
| 0.1146 | 69.0 | 4416 | 0.3147 | 0.2053 | 0.1252 | 0.1426 |
| 0.1146 | 70.0 | 4480 | 0.3241 | 0.2053 | 0.1255 | 0.1441 |
| 0.1119 | 71.0 | 4544 | 0.3152 | 0.2038 | 0.1252 | 0.1435 |
| 0.1033 | 72.0 | 4608 | 0.3242 | 0.2017 | 0.1254 | 0.1437 |
| 0.1033 | 73.0 | 4672 | 0.3191 | 0.2048 | 0.1254 | 0.1439 |
| 0.1016 | 74.0 | 4736 | 0.3330 | 0.2027 | 0.1255 | 0.1438 |
| 0.1059 | 75.0 | 4800 | 0.3180 | 0.2050 | 0.1259 | 0.1437 |
| 0.1059 | 76.0 | 4864 | 0.3239 | 0.2024 | 0.1259 | 0.1445 |
| 0.0983 | 77.0 | 4928 | 0.3301 | 0.2051 | 0.1259 | 0.1445 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.13.3
- Downloads last month
- 113
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support