Create convert_weights.py
Browse files- convert_weights.py +70 -0
convert_weights.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel, AutoConfig
|
| 2 |
+
from DaViT.modeling_davit import DaViTModel
|
| 3 |
+
from DaViT.configuration_davit import DaViTConfig
|
| 4 |
+
from unittest.mock import patch
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
import requests
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch
|
| 10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 11 |
+
from unittest.mock import patch
|
| 12 |
+
from transformers.dynamic_module_utils import get_imports
|
| 13 |
+
from typing import Tuple, Dict, Any, Union, List
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
|
| 17 |
+
"""
|
| 18 |
+
Custom workaround for the import error related to flash_attn.
|
| 19 |
+
Args:
|
| 20 |
+
filename (str | os.PathLike): The filename to check for imports.
|
| 21 |
+
Returns:
|
| 22 |
+
list[str]: List of required imports.
|
| 23 |
+
"""
|
| 24 |
+
if not str(filename).endswith("modeling_florence2.py"):
|
| 25 |
+
return get_imports(filename)
|
| 26 |
+
imports = get_imports(filename)
|
| 27 |
+
if "flash_attn" in imports:
|
| 28 |
+
imports.remove("flash_attn")
|
| 29 |
+
return imports
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
current_directory = os.getcwd()
|
| 33 |
+
|
| 34 |
+
# Register the configuration and model
|
| 35 |
+
AutoConfig.register("davit", DaViTConfig)
|
| 36 |
+
AutoModel.register(DaViTConfig, DaViTModel)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Register Huggingface Model
|
| 40 |
+
DaViTConfig.register_for_auto_class()
|
| 41 |
+
DaViTModel.register_for_auto_class("AutoModel")
|
| 42 |
+
|
| 43 |
+
AutoConfig.register("davit", DaViTConfig)
|
| 44 |
+
AutoModel.register(DaViTConfig, DaViTModel)
|
| 45 |
+
|
| 46 |
+
# Step 1: Create a configuration object
|
| 47 |
+
config = DaViTConfig()
|
| 48 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
"microsoft/Florence-2-large-ft",
|
| 51 |
+
trust_remote_code=True,
|
| 52 |
+
cache_dir=current_directory,
|
| 53 |
+
device_map="cpu",
|
| 54 |
+
torch_dtype=torch.float16,
|
| 55 |
+
)
|
| 56 |
+
processor = AutoProcessor.from_pretrained(
|
| 57 |
+
"microsoft/Florence-2-large-ft",
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
cache_dir=current_directory,
|
| 60 |
+
device_map="cpu",
|
| 61 |
+
)
|
| 62 |
+
# Step 2: Create a model object
|
| 63 |
+
model2 = AutoModel.from_config(config)
|
| 64 |
+
model2.to(torch.float16)
|
| 65 |
+
|
| 66 |
+
model2.load_state_dict(model.vision_tower.state_dict())
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
model2.push_to_hub("DaViT-Florence-2-large-ft")
|
| 70 |
+
processor.push_to_hub("DaViT-Florence-2-large-ft")
|