File size: 42,059 Bytes
ced6e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
"""
PyTorch Autoencoder model for Hugging Face Transformers.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, Dict, Any, List
from dataclasses import dataclass
import random
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import ModelOutput
from configuration_autoencoder import AutoencoderConfig
class NeuralScaler(nn.Module):
"""Learnable alternative to StandardScaler using neural networks."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
# Networks to learn data-dependent statistics
self.mean_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.std_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),
nn.Softplus() # Ensure positive standard deviation
)
# Learnable affine transformation parameters
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
# Running statistics for inference (like BatchNorm)
self.register_buffer('running_mean', torch.zeros(input_dim))
self.register_buffer('running_std', torch.ones(input_dim))
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
# Momentum for running statistics
self.momentum = 0.1
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through neural scaler.
Args:
x: Input tensor (2D or 3D)
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, regularization_loss)
"""
if inverse:
return self._inverse_transform(x)
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
if self.training:
# Training mode: learn statistics from current batch
batch_mean = x.mean(dim=0, keepdim=True)
batch_std = x.std(dim=0, keepdim=True)
# Learn data-dependent adjustments
learned_mean_adj = self.mean_estimator(batch_mean)
learned_std_adj = self.std_estimator(batch_std)
# Combine batch statistics with learned adjustments
effective_mean = batch_mean + learned_mean_adj
effective_std = batch_std + learned_std_adj + 1e-8
# Update running statistics
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_mean.copy_(batch_mean.squeeze())
self.running_std.copy_(batch_std.squeeze())
else:
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
else:
# Inference mode: use running statistics
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
# Normalize
normalized = (x - effective_mean) / effective_std
# Apply learnable affine transformation
transformed = normalized * self.weight + self.bias
# Reshape back to original shape if needed
if len(original_shape) == 3:
transformed = transformed.view(original_shape)
# Regularization loss to encourage meaningful learning
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
return transformed, reg_loss
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply inverse transformation to get back original scale."""
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
# Reverse affine transformation
x = (x - self.bias) / (self.weight + 1e-8)
# Reverse normalization using running statistics
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
x = x * effective_std + effective_mean
# Reshape back to original shape if needed
if len(original_shape) == 3:
x = x.view(original_shape)
return x, torch.tensor(0.0, device=x.device)
class CouplingLayer(nn.Module):
"""Coupling layer for normalizing flows."""
def __init__(self, input_dim: int, hidden_dim: int = 64, mask_type: str = "alternating"):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
# Create mask for coupling
if mask_type == "alternating":
self.register_buffer('mask', torch.arange(input_dim) % 2)
elif mask_type == "half":
mask = torch.zeros(input_dim)
mask[:input_dim // 2] = 1
self.register_buffer('mask', mask)
else:
raise ValueError(f"Unknown mask type: {mask_type}")
# Scale and translation networks
masked_dim = int(self.mask.sum().item())
unmasked_dim = input_dim - masked_dim
self.scale_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, unmasked_dim),
nn.Tanh() # Bounded output for stability
)
self.translate_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, unmasked_dim)
)
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through coupling layer.
Args:
x: Input tensor
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, log_determinant)
"""
mask = self.mask.bool()
x_masked = x[:, mask]
x_unmasked = x[:, ~mask]
# Compute scale and translation
s = self.scale_net(x_masked)
t = self.translate_net(x_masked)
if not inverse:
# Forward transformation
y_unmasked = x_unmasked * torch.exp(s) + t
log_det = s.sum(dim=1)
else:
# Inverse transformation
y_unmasked = (x_unmasked - t) * torch.exp(-s)
log_det = -s.sum(dim=1)
# Reconstruct output
y = torch.zeros_like(x)
y[:, mask] = x_masked
y[:, ~mask] = y_unmasked
return y, log_det
class NormalizingFlowPreprocessor(nn.Module):
"""Normalizing flow for learnable data preprocessing."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
num_layers = config.flow_coupling_layers
# Create coupling layers with alternating masks
self.layers = nn.ModuleList()
for i in range(num_layers):
mask_type = "alternating" if i % 2 == 0 else "half"
self.layers.append(CouplingLayer(input_dim, hidden_dim, mask_type))
# Optional: Add batch normalization between layers
if config.use_batch_norm:
self.batch_norms = nn.ModuleList([
nn.BatchNorm1d(input_dim) for _ in range(num_layers - 1)
])
else:
self.batch_norms = None
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through normalizing flow.
Args:
x: Input tensor (2D or 3D)
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, total_log_determinant)
"""
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
log_det_total = torch.zeros(x.size(0), device=x.device)
if not inverse:
# Forward pass
for i, layer in enumerate(self.layers):
x, log_det = layer(x, inverse=False)
log_det_total += log_det
# Apply batch normalization (except for last layer)
if self.batch_norms and i < len(self.layers) - 1:
x = self.batch_norms[i](x)
else:
# Inverse pass
for i, layer in enumerate(reversed(self.layers)):
# Reverse batch normalization (except for first layer in reverse)
if self.batch_norms and i > 0:
# Note: This is approximate inverse of batch norm
bn_idx = len(self.layers) - 1 - i
x = self.batch_norms[bn_idx](x)
x, log_det = layer(x, inverse=True)
log_det_total += log_det
# Reshape back to original shape if needed
if len(original_shape) == 3:
x = x.view(original_shape)
# Convert log determinant to regularization loss
# Encourage the flow to preserve information (log_det close to 0)
reg_loss = 0.01 * log_det_total.abs().mean()
return x, reg_loss
class LearnablePreprocessor(nn.Module):
"""Unified interface for learnable preprocessing methods."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
if not config.has_preprocessing:
self.preprocessor = nn.Identity()
elif config.is_neural_scaler:
self.preprocessor = NeuralScaler(config)
elif config.is_normalizing_flow:
self.preprocessor = NormalizingFlowPreprocessor(config)
else:
raise ValueError(f"Unknown preprocessing type: {config.preprocessing_type}")
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply preprocessing transformation.
Args:
x: Input tensor
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, regularization_loss)
"""
if isinstance(self.preprocessor, nn.Identity):
return x, torch.tensor(0.0, device=x.device)
return self.preprocessor(x, inverse=inverse)
@dataclass
class AutoencoderOutput(ModelOutput):
"""
Output type of AutoencoderModel.
Args:
last_hidden_state (torch.FloatTensor): The latent representation of the input.
reconstructed (torch.FloatTensor, optional): The reconstructed input.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
last_hidden_state: torch.FloatTensor = None
reconstructed: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
"""
Output type of AutoencoderForReconstruction.
Args:
loss (torch.FloatTensor, optional): The reconstruction loss.
reconstructed (torch.FloatTensor): The reconstructed input.
last_hidden_state (torch.FloatTensor): The latent representation.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
loss: Optional[torch.FloatTensor] = None
reconstructed: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
class AutoencoderEncoder(nn.Module):
"""Encoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build encoder layers
layers = []
input_dim = config.input_dim
for hidden_dim in config.hidden_dims:
layers.append(nn.Linear(input_dim, hidden_dim))
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
input_dim = hidden_dim
self.encoder = nn.Sequential(*layers)
# For variational autoencoders, we need separate layers for mean and log variance
if config.is_variational:
self.fc_mu = nn.Linear(input_dim, config.latent_dim)
self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
else:
# Standard encoder output
self.fc_out = nn.Linear(input_dim, config.latent_dim)
def _get_activation(self, activation: str) -> nn.Module:
"""Get activation function by name."""
activations = {
"relu": nn.ReLU(),
"tanh": nn.Tanh(),
"sigmoid": nn.Sigmoid(),
"leaky_relu": nn.LeakyReLU(),
"gelu": nn.GELU(),
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"elu": nn.ELU(),
"prelu": nn.PReLU(),
"relu6": nn.ReLU6(),
"hardtanh": nn.Hardtanh(),
"hardsigmoid": nn.Hardsigmoid(),
"hardswish": nn.Hardswish(),
"mish": nn.Mish(),
"softplus": nn.Softplus(),
"softsign": nn.Softsign(),
"tanhshrink": nn.Tanhshrink(),
"threshold": nn.Threshold(threshold=0.1, value=0),
}
return activations[activation]
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Forward pass through encoder."""
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
encoded = self.encoder(x)
if self.config.is_variational:
# Variational autoencoder: return mean, log variance, and sampled latent
mu = self.fc_mu(encoded)
logvar = self.fc_logvar(encoded)
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu # Use mean during inference
return z, mu, logvar
else:
# Standard autoencoder
latent = self.fc_out(encoded)
# Add sparsity constraint for sparse autoencoders
if self.config.is_sparse and self.training:
# Apply L1 regularization to encourage sparsity
latent = F.relu(latent) # Ensure non-negative activations
return latent
class AutoencoderDecoder(nn.Module):
"""Decoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build decoder layers (reverse of encoder)
layers = []
input_dim = config.latent_dim
decoder_dims = config.decoder_dims + [config.input_dim]
for i, hidden_dim in enumerate(decoder_dims):
layers.append(nn.Linear(input_dim, hidden_dim))
# Don't add batch norm, activation, or dropout to the final layer
if i < len(decoder_dims) - 1:
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
else:
# Final layer - add appropriate activation based on reconstruction loss
if config.reconstruction_loss == "bce":
layers.append(nn.Sigmoid())
input_dim = hidden_dim
self.decoder = nn.Sequential(*layers)
def _get_activation(self, activation: str) -> nn.Module:
"""Get activation function by name."""
activations = {
"relu": nn.ReLU(),
"tanh": nn.Tanh(),
"sigmoid": nn.Sigmoid(),
"leaky_relu": nn.LeakyReLU(),
"gelu": nn.GELU(),
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"elu": nn.ELU(),
"prelu": nn.PReLU(),
"relu6": nn.ReLU6(),
"hardtanh": nn.Hardtanh(),
"hardsigmoid": nn.Hardsigmoid(),
"hardswish": nn.Hardswish(),
"mish": nn.Mish(),
"softplus": nn.Softplus(),
"softsign": nn.Softsign(),
"tanhshrink": nn.Tanhshrink(),
"threshold": nn.Threshold(threshold=0.1, value=0),
}
return activations[activation]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through decoder."""
return self.decoder(x)
class RecurrentEncoder(nn.Module):
"""Recurrent encoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.input_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=config.bidirectional
)
# Projection layer for bidirectional RNN
if config.bidirectional:
self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
else:
self.projection = None
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""
Forward pass through recurrent encoder.
Args:
x: Input tensor of shape (batch_size, seq_len, input_dim)
lengths: Sequence lengths for packed sequences (optional)
Returns:
Encoded representation or tuple for VAE
"""
batch_size, seq_len, _ = x.shape
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
# Pack sequences if lengths provided
if lengths is not None:
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
# RNN forward pass
if self.config.rnn_type == "lstm":
output, (hidden, cell) = self.rnn(x)
else:
output, hidden = self.rnn(x)
cell = None
# Unpack if necessary
if lengths is not None:
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# Use last hidden state as encoding
if self.config.bidirectional:
# Concatenate forward and backward hidden states
hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
hidden = hidden[-1] # Take last layer
hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1) # Concatenate directions
# Project to latent dimension
if self.projection:
hidden = self.projection(hidden)
else:
hidden = hidden[-1] # Take last layer
# Apply batch normalization
if self.batch_norm:
hidden = self.batch_norm(hidden)
# Apply dropout
if self.dropout and self.training:
hidden = self.dropout(hidden)
# Handle variational encoding
if self.config.is_variational:
# Split hidden into mean and log variance
mu = hidden[:, :self.config.latent_dim // 2]
logvar = hidden[:, self.config.latent_dim // 2:]
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu
return z, mu, logvar
else:
return hidden
class RecurrentDecoder(nn.Module):
"""Recurrent decoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.latent_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=False # Decoder is always unidirectional
)
# Output projection
self.output_projection = nn.Linear(config.latent_dim, config.input_dim)
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Forward pass through recurrent decoder.
Args:
z: Latent representation of shape (batch_size, latent_dim)
target_length: Length of sequence to generate
target_sequence: Target sequence for teacher forcing (optional)
Returns:
Decoded sequence of shape (batch_size, seq_len, input_dim)
"""
batch_size = z.size(0)
device = z.device
# Initialize hidden state with latent representation
if self.config.rnn_type == "lstm":
h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
c_0 = torch.zeros_like(h_0)
hidden = (h_0, c_0)
else:
hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
outputs = []
# Initialize input (can be learned or zero)
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
for t in range(target_length):
# Teacher forcing decision
use_teacher_forcing = (target_sequence is not None and
self.training and
random.random() < self.config.teacher_forcing_ratio)
if use_teacher_forcing and t > 0:
# Use previous target as input
current_input = target_sequence[:, t-1:t, :]
# Project to latent dimension if needed
if current_input.size(-1) != self.config.latent_dim:
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# RNN forward step
if self.config.rnn_type == "lstm":
output, hidden = self.rnn(current_input, hidden)
else:
output, hidden = self.rnn(current_input, hidden)
# Apply batch normalization and dropout
output_flat = output.squeeze(1) # Remove sequence dimension
if self.batch_norm:
output_flat = self.batch_norm(output_flat)
if self.dropout and self.training:
output_flat = self.dropout(output_flat)
# Project to output dimension
step_output = self.output_projection(output_flat)
outputs.append(step_output.unsqueeze(1))
# Use output as next input (for non-teacher forcing)
if not use_teacher_forcing:
# Project output back to latent dimension for next step
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# Concatenate all outputs
return torch.cat(outputs, dim=1)
class AutoencoderModel(PreTrainedModel):
"""
The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
PyTorch documentation for all matter related to general usage and behavior.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
supports_gradient_checkpointing = False
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize learnable preprocessing
if config.has_preprocessing:
self.preprocessor = LearnablePreprocessor(config)
else:
self.preprocessor = None
# Initialize encoder and decoder based on type
if config.is_recurrent:
self.encoder = RecurrentEncoder(config)
self.decoder = RecurrentDecoder(config)
else:
self.encoder = AutoencoderEncoder(config)
self.decoder = AutoencoderDecoder(config)
# Tie weights if specified
if config.tie_weights:
self._tie_weights()
# Initialize weights
self.post_init()
def _tie_weights(self):
"""Tie encoder and decoder weights (transpose relationship)."""
# This is a simplified weight tying - in practice, you might want more sophisticated tying
pass
def get_input_embeddings(self):
"""Get input embeddings (not applicable for basic autoencoder)."""
return None
def set_input_embeddings(self, value):
"""Set input embeddings (not applicable for basic autoencoder)."""
pass
def forward(
self,
input_values: torch.Tensor,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
"""
Forward pass through the autoencoder.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderOutput or tuple: The model outputs.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Apply learnable preprocessing
preprocessing_loss = torch.tensor(0.0, device=input_values.device)
if self.preprocessor is not None:
input_values, preprocessing_loss = self.preprocessor(input_values, inverse=False)
# Handle different autoencoder types
if self.config.is_recurrent:
# Recurrent autoencoder
if sequence_lengths is not None:
encoder_output = self.encoder(input_values, sequence_lengths)
else:
encoder_output = self.encoder(input_values)
if self.config.is_variational:
latent, mu, logvar = encoder_output
self._mu = mu
self._logvar = logvar
else:
latent = encoder_output
self._mu = None
self._logvar = None
# Determine target length for decoder
if target_length is None:
if self.config.sequence_length is not None:
target_length = self.config.sequence_length
else:
target_length = input_values.size(1) # Use input sequence length
# Decode latent back to sequence space
reconstructed = self.decoder(latent, target_length, input_values if self.training else None)
else:
# Standard autoencoder
encoder_output = self.encoder(input_values)
if self.config.is_variational:
latent, mu, logvar = encoder_output
self._mu = mu
self._logvar = logvar
else:
latent = encoder_output
self._mu = None
self._logvar = None
# Decode latent back to input space
reconstructed = self.decoder(latent)
# Apply inverse preprocessing to reconstruction
if self.preprocessor is not None and self.config.learn_inverse_preprocessing:
reconstructed, inverse_loss = self.preprocessor(reconstructed, inverse=True)
preprocessing_loss += inverse_loss
hidden_states = None
if output_hidden_states:
if self.config.is_variational:
hidden_states = (latent, mu, logvar)
else:
hidden_states = (latent,)
if not return_dict:
return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)
return AutoencoderOutput(
last_hidden_state=latent,
reconstructed=reconstructed,
hidden_states=hidden_states,
preprocessing_loss=preprocessing_loss,
)
class AutoencoderForReconstruction(PreTrainedModel):
"""
Autoencoder Model with a reconstruction head on top for reconstruction tasks.
This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize the base autoencoder model
self.autoencoder = AutoencoderModel(config)
# Initialize weights
self.post_init()
def get_input_embeddings(self):
"""Get input embeddings."""
return self.autoencoder.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set input embeddings."""
self.autoencoder.set_input_embeddings(value)
def _compute_reconstruction_loss(
self,
reconstructed: torch.Tensor,
target: torch.Tensor
) -> torch.Tensor:
"""Compute reconstruction loss based on the configured loss type."""
if self.config.reconstruction_loss == "mse":
return F.mse_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "bce":
return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "l1":
return F.l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "huber":
return F.huber_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "smooth_l1":
return F.smooth_l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "kl_div":
return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
elif self.config.reconstruction_loss == "cosine":
return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
elif self.config.reconstruction_loss == "focal":
return self._focal_loss(reconstructed, target)
elif self.config.reconstruction_loss == "dice":
return self._dice_loss(reconstructed, target)
elif self.config.reconstruction_loss == "tversky":
return self._tversky_loss(reconstructed, target)
elif self.config.reconstruction_loss == "ssim":
return self._ssim_loss(reconstructed, target)
elif self.config.reconstruction_loss == "perceptual":
return self._perceptual_loss(reconstructed, target)
else:
raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")
def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
"""Compute focal loss for handling class imbalance."""
ce_loss = F.mse_loss(pred, target, reduction="none")
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
return focal_loss.mean()
def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Dice loss for segmentation-like tasks."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
intersection = (pred_flat * target_flat).sum()
dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
return 1 - dice
def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Tversky loss, a generalization of Dice loss."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
true_pos = (pred_flat * target_flat).sum()
false_neg = (target_flat * (1 - pred_flat)).sum()
false_pos = ((1 - target_flat) * pred_flat).sum()
tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
return 1 - tversky
def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute SSIM-based loss (simplified version)."""
# Simplified SSIM for 1D data
mu1 = pred.mean(dim=-1, keepdim=True)
mu2 = target.mean(dim=-1, keepdim=True)
sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)
c1, c2 = 0.01, 0.03
ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
return 1 - ssim.mean()
def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute perceptual loss (simplified version using feature differences)."""
# For simplicity, use L2 loss on normalized features
pred_norm = F.normalize(pred, p=2, dim=-1)
target_norm = F.normalize(target, p=2, dim=-1)
return F.mse_loss(pred_norm, target_norm)
def forward(
self,
input_values: torch.Tensor,
labels: Optional[torch.Tensor] = None,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
"""
Forward pass with reconstruction loss calculation.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# If no labels provided, use input as target (standard autoencoder)
if labels is None:
labels = input_values
# Forward pass through autoencoder
outputs = self.autoencoder(
input_values=input_values,
sequence_lengths=sequence_lengths,
target_length=target_length,
output_hidden_states=output_hidden_states,
return_dict=True,
)
reconstructed = outputs.reconstructed
latent = outputs.last_hidden_state
hidden_states = outputs.hidden_states
# Compute reconstruction loss
recon_loss = self._compute_reconstruction_loss(reconstructed, labels)
# Add regularization losses based on autoencoder type
total_loss = recon_loss
# Add preprocessing loss if available
if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
total_loss += outputs.preprocessing_loss
if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
# KL divergence loss for variational autoencoders
kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1)) # Normalize by batch size and latent dim
total_loss = recon_loss + self.config.beta * kl_loss
elif self.config.is_sparse:
# Sparsity loss for sparse autoencoders
latent = outputs.last_hidden_state
sparsity_loss = torch.mean(torch.abs(latent)) # L1 sparsity
total_loss = recon_loss + 0.1 * sparsity_loss # Sparsity weight
elif self.config.is_contractive:
# Contractive loss - penalize large gradients of hidden representation w.r.t. input
latent = outputs.last_hidden_state
latent.retain_grad()
if latent.grad is not None:
contractive_loss = torch.sum(latent.grad ** 2)
total_loss = recon_loss + 0.1 * contractive_loss
loss = total_loss
if not return_dict:
output = (reconstructed, latent)
if hidden_states is not None:
output = output + (hidden_states,)
return ((loss,) + output) if loss is not None else output
return AutoencoderForReconstructionOutput(
loss=loss,
reconstructed=reconstructed,
last_hidden_state=latent,
hidden_states=hidden_states,
preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
)
|