File size: 16,052 Bytes
ced6e93 8abd44b 0fa67db ced6e93 5eda1f5 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 5b68b61 ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 5b68b61 ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 5b68b61 ced6e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
"""
Autoencoder configuration for Hugging Face Transformers.
"""
from dataclasses import dataclass
from typing import Union
# Import PretrainedConfig in a way that avoids circular imports in some environments (e.g., Databricks)
try:
from transformers.configuration_utils import PretrainedConfig
except Exception: # fallback
from transformers import PretrainedConfig
from typing import List, Optional
# Support both package-relative and flat import in HF remote code context
try:
from . import __version__ as _pkg_version # type: ignore
except Exception: # pragma: no cover
_pkg_version = None
@dataclass
class BlockConfig:
type: str
@dataclass
class LinearBlockConfig(BlockConfig):
input_dim: int
output_dim: int
activation: str = "relu"
normalization: Optional[str] = "batch" # batch|layer|group|instance|none
dropout_rate: float = 0.0
use_residual: bool = False
residual_scale: float = 1.0
def __init__(self, input_dim: int, output_dim: int, activation: str = "relu", normalization: Optional[str] = "batch", dropout_rate: float = 0.0, use_residual: bool = False, residual_scale: float = 1.0):
super().__init__(type="linear")
self.input_dim = input_dim
self.output_dim = output_dim
self.activation = activation
self.normalization = normalization
self.dropout_rate = dropout_rate
self.use_residual = use_residual
self.residual_scale = residual_scale
@dataclass
class AttentionBlockConfig(BlockConfig):
input_dim: int
num_heads: int = 8
ffn_dim: Optional[int] = None
dropout_rate: float = 0.0
def __init__(self, input_dim: int, num_heads: int = 8, ffn_dim: Optional[int] = None, dropout_rate: float = 0.0):
super().__init__(type="attention")
self.input_dim = input_dim
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.dropout_rate = dropout_rate
@dataclass
class RecurrentBlockConfig(BlockConfig):
input_dim: int
hidden_size: int
num_layers: int = 1
rnn_type: str = "lstm" # lstm|gru|rnn
bidirectional: bool = False
dropout_rate: float = 0.0
output_dim: Optional[int] = None # if None, use hidden_size * directions
def __init__(self, input_dim: int, hidden_size: int, num_layers: int = 1, rnn_type: str = "lstm", bidirectional: bool = False, dropout_rate: float = 0.0, output_dim: Optional[int] = None):
super().__init__(type="recurrent")
self.input_dim = input_dim
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn_type = rnn_type
self.bidirectional = bidirectional
self.dropout_rate = dropout_rate
self.output_dim = output_dim
@dataclass
class ConvolutionalBlockConfig(BlockConfig):
input_dim: int # channels in (features)
output_dim: int # channels out
kernel_size: int = 3
padding: Union[int, str] = "same" # "same" or int
activation: str = "relu"
normalization: Optional[str] = "batch"
dropout_rate: float = 0.0
def __init__(self, input_dim: int, output_dim: int, kernel_size: int = 3, padding: Union[int, str] = "same", activation: str = "relu", normalization: Optional[str] = "batch", dropout_rate: float = 0.0):
super().__init__(type="conv1d")
self.input_dim = input_dim
self.output_dim = output_dim
self.kernel_size = kernel_size
self.padding = padding
self.activation = activation
self.normalization = normalization
self.dropout_rate = dropout_rate
@dataclass
class VariationalBlockConfig(BlockConfig):
input_dim: int
latent_dim: int
def __init__(self, input_dim: int, latent_dim: int):
super().__init__(type="variational")
self.input_dim = input_dim
self.latent_dim = latent_dim
class AutoencoderConfig(PretrainedConfig):
"""
Configuration class for Autoencoder models.
This configuration class stores the configuration of an autoencoder model. It is used to instantiate
an autoencoder model according to the specified arguments, defining the model architecture.
Args:
input_dim (int, optional): Dimensionality of the input data. Defaults to 784.
hidden_dims (List[int], optional): Legacy: List of hidden layer dims for simple MLP encoder.
encoder_blocks (List[dict], optional): New: List of block configs for encoder.
decoder_blocks (List[dict], optional): New: List of block configs for decoder.
latent_dim (int, optional): Dimensionality of the latent space. Defaults to 64.
activation (str, optional): Default activation for Linear blocks. See supported list below.
dropout_rate (float, optional): Default dropout for Linear blocks. Defaults to 0.1.
use_batch_norm (bool, optional): Default normalization for Linear blocks (batch vs none). Defaults to True.
tie_weights (bool, optional): Whether to tie encoder and decoder weights. Defaults to False.
reconstruction_loss (str, optional): Type of reconstruction loss. Options: "mse", "bce", "l1",
"huber", "smooth_l1", "kl_div", "cosine", "focal", "dice", "tversky", "ssim", "perceptual".
Defaults to "mse".
autoencoder_type (str, optional): Type of autoencoder architecture. Options: "classic",
"variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent". Defaults to "classic".
beta (float, optional): Beta parameter for beta-VAE. Defaults to 1.0.
temperature (float, optional): Temperature parameter for Gumbel softmax or other operations. Defaults to 1.0.
noise_factor (float, optional): Noise factor for denoising autoencoders. Defaults to 0.1.
rnn_type (str, optional): Type of RNN cell for recurrent autoencoders. Options: "lstm", "gru", "rnn".
Defaults to "lstm".
num_layers (int, optional): Number of RNN layers for recurrent autoencoders. Defaults to 2.
bidirectional (bool, optional): Whether to use bidirectional RNN for encoding. Defaults to True.
sequence_length (int, optional): Fixed sequence length. If None, supports variable length sequences.
Defaults to None.
teacher_forcing_ratio (float, optional): Ratio of teacher forcing during training for recurrent decoders.
Defaults to 0.5.
use_learnable_preprocessing (bool, optional): Whether to use learnable preprocessing. Defaults to False.
preprocessing_type (str, optional): Type of learnable preprocessing. Options: "none", "neural_scaler",
"normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson". Defaults to "none".
preprocessing_hidden_dim (int, optional): Hidden dimension for preprocessing networks. Defaults to 64.
preprocessing_num_layers (int, optional): Number of layers in preprocessing networks. Defaults to 2.
learn_inverse_preprocessing (bool, optional): Whether to learn inverse preprocessing for reconstruction.
Defaults to True.
flow_coupling_layers (int, optional): Number of coupling layers for normalizing flows. Defaults to 4.
**kwargs: Additional keyword arguments passed to the parent class.
"""
model_type = "autoencoder"
def __init__(
self,
input_dim: int = 784,
hidden_dims: List[int] = None,
encoder_blocks: Optional[List[dict]] = None,
decoder_blocks: Optional[List[dict]] = None,
latent_dim: int = 64,
activation: str = "relu",
dropout_rate: float = 0.1,
use_batch_norm: bool = True,
tie_weights: bool = False,
reconstruction_loss: str = "mse",
autoencoder_type: str = "classic",
beta: float = 1.0,
temperature: float = 1.0,
noise_factor: float = 0.1,
# Recurrent autoencoder parameters
rnn_type: str = "lstm",
num_layers: int = 2,
bidirectional: bool = True,
sequence_length: Optional[int] = None,
teacher_forcing_ratio: float = 0.5,
# Deep learning preprocessing parameters
use_learnable_preprocessing: bool = False,
preprocessing_type: str = "none",
preprocessing_hidden_dim: int = 64,
preprocessing_num_layers: int = 2,
learn_inverse_preprocessing: bool = True,
flow_coupling_layers: int = 4,
**kwargs,
):
# Validate parameters
if hidden_dims is None:
hidden_dims = [512, 256, 128]
# Extended activation functions
valid_activations = [
"relu", "tanh", "sigmoid", "leaky_relu", "gelu", "swish", "silu",
"elu", "prelu", "relu6", "hardtanh", "hardsigmoid", "hardswish",
"mish", "softplus", "softsign", "tanhshrink", "threshold"
]
if activation not in valid_activations:
raise ValueError(
f"`activation` must be one of {valid_activations}, got {activation}."
)
# Extended loss functions
valid_losses = [
"mse", "bce", "l1", "huber", "smooth_l1", "kl_div", "cosine",
"focal", "dice", "tversky", "ssim", "perceptual"
]
if reconstruction_loss not in valid_losses:
raise ValueError(
f"`reconstruction_loss` must be one of {valid_losses}, got {reconstruction_loss}."
)
# Autoencoder types
valid_types = ["classic", "variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent"]
if autoencoder_type not in valid_types:
raise ValueError(
f"`autoencoder_type` must be one of {valid_types}, got {autoencoder_type}."
)
# RNN types for recurrent autoencoders
valid_rnn_types = ["lstm", "gru", "rnn"]
if rnn_type not in valid_rnn_types:
raise ValueError(
f"`rnn_type` must be one of {valid_rnn_types}, got {rnn_type}."
)
if not (0.0 <= dropout_rate <= 1.0):
raise ValueError(f"`dropout_rate` must be between 0.0 and 1.0, got {dropout_rate}.")
if input_dim <= 0:
raise ValueError(f"`input_dim` must be positive, got {input_dim}.")
if latent_dim <= 0:
raise ValueError(f"`latent_dim` must be positive, got {latent_dim}.")
if not all(dim > 0 for dim in hidden_dims):
raise ValueError("All dimensions in `hidden_dims` must be positive.")
if beta <= 0:
raise ValueError(f"`beta` must be positive, got {beta}.")
if num_layers <= 0:
raise ValueError(f"`num_layers` must be positive, got {num_layers}.")
if not (0.0 <= teacher_forcing_ratio <= 1.0):
raise ValueError(f"`teacher_forcing_ratio` must be between 0.0 and 1.0, got {teacher_forcing_ratio}.")
if sequence_length is not None and sequence_length <= 0:
raise ValueError(f"`sequence_length` must be positive when specified, got {sequence_length}.")
# Preprocessing validation
valid_preprocessing = [
"none",
"neural_scaler",
"normalizing_flow",
"minmax_scaler",
"robust_scaler",
"yeo_johnson",
]
if preprocessing_type not in valid_preprocessing:
raise ValueError(
f"`preprocessing_type` must be one of {valid_preprocessing}, got {preprocessing_type}."
)
if preprocessing_hidden_dim <= 0:
raise ValueError(f"`preprocessing_hidden_dim` must be positive, got {preprocessing_hidden_dim}.")
if preprocessing_num_layers <= 0:
raise ValueError(f"`preprocessing_num_layers` must be positive, got {preprocessing_num_layers}.")
if flow_coupling_layers <= 0:
raise ValueError(f"`flow_coupling_layers` must be positive, got {flow_coupling_layers}.")
# Set configuration attributes
self.input_dim = input_dim
self.hidden_dims = hidden_dims
self.encoder_blocks = encoder_blocks
self.decoder_blocks = decoder_blocks
self.latent_dim = latent_dim
self.activation = activation
self.dropout_rate = dropout_rate
self.use_batch_norm = use_batch_norm
self.tie_weights = tie_weights
self.reconstruction_loss = reconstruction_loss
self.autoencoder_type = autoencoder_type
self.beta = beta
self.temperature = temperature
self.noise_factor = noise_factor
self.rnn_type = rnn_type
self.num_layers = num_layers
self.bidirectional = bidirectional
self.sequence_length = sequence_length
self.teacher_forcing_ratio = teacher_forcing_ratio
self.use_learnable_preprocessing = use_learnable_preprocessing
self.preprocessing_type = preprocessing_type
self.preprocessing_hidden_dim = preprocessing_hidden_dim
self.preprocessing_num_layers = preprocessing_num_layers
self.learn_inverse_preprocessing = learn_inverse_preprocessing
self.flow_coupling_layers = flow_coupling_layers
# Call parent constructor
super().__init__(**kwargs)
@property
def decoder_dims(self) -> List[int]:
"""Get decoder dimensions (reverse of encoder hidden dims)."""
return list(reversed(self.hidden_dims))
@property
def has_block_lists(self) -> bool:
"""Whether explicit encoder/decoder block configs are provided."""
return (self.encoder_blocks is not None) or (self.decoder_blocks is not None)
@property
def is_variational(self) -> bool:
"""Check if this is a variational autoencoder."""
return self.autoencoder_type in ["variational", "beta_vae"]
@property
def is_denoising(self) -> bool:
"""Check if this is a denoising autoencoder."""
return self.autoencoder_type == "denoising"
@property
def is_sparse(self) -> bool:
"""Check if this is a sparse autoencoder."""
return self.autoencoder_type == "sparse"
@property
def is_contractive(self) -> bool:
"""Check if this is a contractive autoencoder."""
return self.autoencoder_type == "contractive"
@property
def is_recurrent(self) -> bool:
"""Check if this is a recurrent autoencoder."""
return self.autoencoder_type == "recurrent"
@property
def rnn_hidden_size(self) -> int:
"""Get the RNN hidden size (same as latent_dim for recurrent AE)."""
return self.latent_dim
@property
def rnn_output_size(self) -> int:
"""Get the RNN output size considering bidirectionality."""
return self.latent_dim * (2 if self.bidirectional else 1)
@property
def has_preprocessing(self) -> bool:
"""Check if learnable preprocessing is enabled."""
return self.use_learnable_preprocessing and self.preprocessing_type != "none"
@property
def is_neural_scaler(self) -> bool:
"""Check if using neural scaler preprocessing."""
return self.preprocessing_type == "neural_scaler"
@property
def is_normalizing_flow(self) -> bool:
"""Check if using normalizing flow preprocessing."""
return self.preprocessing_type == "normalizing_flow"
@property
def is_minmax_scaler(self) -> bool:
"""Check if using learnable MinMax scaler preprocessing."""
return self.preprocessing_type == "minmax_scaler"
@property
def is_robust_scaler(self) -> bool:
"""Check if using learnable Robust scaler preprocessing."""
return self.preprocessing_type == "robust_scaler"
@property
def is_yeo_johnson(self) -> bool:
"""Check if using learnable Yeo-Johnson power transform preprocessing."""
return self.preprocessing_type == "yeo_johnson"
def to_dict(self):
"""
Serializes this instance to a Python dictionary.
"""
output = super().to_dict()
return output
|