File size: 32,356 Bytes
ced6e93 8abd44b ced6e93 0fa67db ced6e93 5eda1f5 ced6e93 8abd44b ced6e93 8abd44b ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 8abd44b 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 8abd44b ced6e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
"""
PyTorch Autoencoder model for Hugging Face Transformers.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, Dict, Any, List
from dataclasses import dataclass
import random
import re
# Import PreTrainedModel in a way that avoids circular imports in some environments (e.g., Databricks)
try:
from transformers.modeling_utils import PreTrainedModel
except Exception:
# Fallback if direct path is unavailable
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import ModelOutput
try:
from .configuration_autoencoder import AutoencoderConfig # when loaded via HF dynamic module
except Exception:
from configuration_autoencoder import AutoencoderConfig # local usage
# Block-based architecture components
try:
from .blocks import (
BlockFactory,
BlockSequence,
LinearBlockConfig,
AttentionBlockConfig,
RecurrentBlockConfig,
ConvolutionalBlockConfig,
VariationalBlockConfig,
VariationalBlock,
) # when in package
except Exception:
from blocks import (
BlockFactory,
BlockSequence,
LinearBlockConfig,
AttentionBlockConfig,
RecurrentBlockConfig,
ConvolutionalBlockConfig,
VariationalBlockConfig,
VariationalBlock,
) # local usage
# Shared utilities
try:
from .utils import _get_activation
except Exception:
from utils import _get_activation
# Preprocessing components
try:
from .preprocessing import PreprocessingBlock # when in package
except Exception:
from preprocessing import PreprocessingBlock # local usage
@dataclass
class AutoencoderOutput(ModelOutput):
"""
Output type of AutoencoderModel.
Args:
last_hidden_state (torch.FloatTensor): The latent representation of the input.
reconstructed (torch.FloatTensor, optional): The reconstructed input.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
last_hidden_state: torch.FloatTensor = None
reconstructed: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
"""
Output type of AutoencoderForReconstruction.
Args:
loss (torch.FloatTensor, optional): The reconstruction loss.
reconstructed (torch.FloatTensor): The reconstructed input.
last_hidden_state (torch.FloatTensor): The latent representation.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
loss: Optional[torch.FloatTensor] = None
reconstructed: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
class AutoencoderEncoder(nn.Module):
"""Encoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build encoder layers
layers = []
input_dim = config.input_dim
for hidden_dim in config.hidden_dims:
layers.append(nn.Linear(input_dim, hidden_dim))
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
input_dim = hidden_dim
self.encoder = nn.Sequential(*layers)
# For variational autoencoders, we need separate layers for mean and log variance
if config.is_variational:
self.fc_mu = nn.Linear(input_dim, config.latent_dim)
self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
else:
# Standard encoder output
self.fc_out = nn.Linear(input_dim, config.latent_dim)
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Forward pass through encoder."""
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
encoded = self.encoder(x)
if self.config.is_variational:
# Variational autoencoder: return mean, log variance, and sampled latent
mu = self.fc_mu(encoded)
logvar = self.fc_logvar(encoded)
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu # Use mean during inference
return z, mu, logvar
else:
# Standard autoencoder
latent = self.fc_out(encoded)
# Add sparsity constraint for sparse autoencoders
if self.config.is_sparse and self.training:
# Apply L1 regularization to encourage sparsity
latent = F.relu(latent) # Ensure non-negative activations
return latent
class AutoencoderDecoder(nn.Module):
"""Decoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build decoder layers (reverse of encoder)
layers = []
input_dim = config.latent_dim
decoder_dims = config.decoder_dims + [config.input_dim]
for i, hidden_dim in enumerate(decoder_dims):
layers.append(nn.Linear(input_dim, hidden_dim))
# Don't add batch norm, activation, or dropout to the final layer
if i < len(decoder_dims) - 1:
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(_get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
else:
# Final layer - add appropriate activation based on reconstruction loss
if config.reconstruction_loss == "bce":
layers.append(nn.Sigmoid())
input_dim = hidden_dim
self.decoder = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through decoder."""
return self.decoder(x)
class RecurrentEncoder(nn.Module):
"""Recurrent encoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.input_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=config.bidirectional
)
# Projection layer for bidirectional RNN
if config.bidirectional:
self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
else:
self.projection = None
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""
Forward pass through recurrent encoder.
Args:
x: Input tensor of shape (batch_size, seq_len, input_dim)
lengths: Sequence lengths for packed sequences (optional)
Returns:
Encoded representation or tuple for VAE
"""
batch_size, seq_len, _ = x.shape
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
# Pack sequences if lengths provided
if lengths is not None:
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
# RNN forward pass
if self.config.rnn_type == "lstm":
output, (hidden, cell) = self.rnn(x)
else:
output, hidden = self.rnn(x)
cell = None
# Unpack if necessary
if lengths is not None:
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# Use last hidden state as encoding
if self.config.bidirectional:
# Concatenate forward and backward hidden states
hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
hidden = hidden[-1] # Take last layer
hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1) # Concatenate directions
# Project to latent dimension
if self.projection:
hidden = self.projection(hidden)
else:
hidden = hidden[-1] # Take last layer
# Apply batch normalization
if self.batch_norm:
hidden = self.batch_norm(hidden)
# Apply dropout
if self.dropout and self.training:
hidden = self.dropout(hidden)
# Handle variational encoding
if self.config.is_variational:
# Split hidden into mean and log variance
mu = hidden[:, :self.config.latent_dim // 2]
logvar = hidden[:, self.config.latent_dim // 2:]
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu
return z, mu, logvar
else:
return hidden
class RecurrentDecoder(nn.Module):
"""Recurrent decoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.latent_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=False # Decoder is always unidirectional
)
# Output projection
self.output_projection = nn.Linear(config.latent_dim, config.input_dim)
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Forward pass through recurrent decoder.
Args:
z: Latent representation of shape (batch_size, latent_dim)
target_length: Length of sequence to generate
target_sequence: Target sequence for teacher forcing (optional)
Returns:
Decoded sequence of shape (batch_size, seq_len, input_dim)
"""
batch_size = z.size(0)
device = z.device
# Initialize hidden state with latent representation
if self.config.rnn_type == "lstm":
h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
c_0 = torch.zeros_like(h_0)
hidden = (h_0, c_0)
else:
hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
outputs = []
# Initialize input (can be learned or zero)
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
for t in range(target_length):
# Teacher forcing decision
use_teacher_forcing = (target_sequence is not None and
self.training and
random.random() < self.config.teacher_forcing_ratio)
if use_teacher_forcing and t > 0:
# Use previous target as input
current_input = target_sequence[:, t-1:t, :]
# Project to latent dimension if needed
if current_input.size(-1) != self.config.latent_dim:
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# RNN forward step
if self.config.rnn_type == "lstm":
output, hidden = self.rnn(current_input, hidden)
else:
output, hidden = self.rnn(current_input, hidden)
# Apply batch normalization and dropout
output_flat = output.squeeze(1) # Remove sequence dimension
if self.batch_norm:
output_flat = self.batch_norm(output_flat)
if self.dropout and self.training:
output_flat = self.dropout(output_flat)
# Project to output dimension
step_output = self.output_projection(output_flat)
outputs.append(step_output.unsqueeze(1))
# Use output as next input (for non-teacher forcing)
if not use_teacher_forcing:
# Project output back to latent dimension for next step
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# Concatenate all outputs
return torch.cat(outputs, dim=1)
class AutoencoderModel(PreTrainedModel):
"""
The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
PyTorch documentation for all matter related to general usage and behavior.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
supports_gradient_checkpointing = False
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize learnable preprocessing as a single forward block only
if config.has_preprocessing:
self.pre_block = PreprocessingBlock(config, inverse=False)
else:
self.pre_block = None
# Build block-based encoder/decoder sequences (breaking change refactor)
norm = "batch" if config.use_batch_norm else "none"
def default_linear_sequence(in_dim: int, dims: List[int], activation: str, normalization: str, dropout: float) -> List[LinearBlockConfig]:
cfgs: List[LinearBlockConfig] = []
prev = in_dim
for h in dims:
cfgs.append(
LinearBlockConfig(
input_dim=prev,
output_dim=h,
activation=activation,
normalization=normalization,
dropout_rate=dropout,
use_residual=False,
)
)
prev = h
return cfgs
# Encoder: use explicit block list if provided, else hidden_dims default
if getattr(config, "encoder_blocks", None):
enc_cfgs = config.encoder_blocks
# Compute enc_out_dim from last block's output_dim if linear/conv, else assume input_dim
last_out = None
for b in enc_cfgs:
if isinstance(b, dict):
last_out = b.get("output_dim", last_out)
else:
last_out = getattr(b, "output_dim", last_out)
enc_out_dim = last_out or (config.hidden_dims[-1] if config.hidden_dims else config.input_dim)
else:
enc_cfgs = default_linear_sequence(config.input_dim, config.hidden_dims, config.activation, norm, config.dropout_rate)
enc_out_dim = config.hidden_dims[-1] if config.hidden_dims else config.input_dim
base_encoder_seq: BlockSequence = BlockFactory.build_sequence(enc_cfgs) if len(enc_cfgs) > 0 else BlockSequence([])
# Do not inject pre_block into encoder sequence; apply it explicitly in forward
self.encoder_seq = base_encoder_seq
# Project to latent
if config.is_variational:
self.fc_mu = nn.Linear(enc_out_dim, config.latent_dim)
self.fc_logvar = nn.Linear(enc_out_dim, config.latent_dim)
self.to_latent = None
else:
self.fc_mu = None
self.fc_logvar = None
self.to_latent = nn.Linear(enc_out_dim, config.latent_dim)
# Decoder: use explicit block list if provided, else default MLP back to input
if getattr(config, "decoder_blocks", None):
dec_cfgs = config.decoder_blocks
else:
dec_dims = config.decoder_dims + [config.input_dim]
dec_cfgs = default_linear_sequence(config.latent_dim, dec_dims, config.activation, norm, config.dropout_rate)
# For final projection to input_dim: identity activation and no norm/dropout
if len(dec_cfgs) > 0:
last = dec_cfgs[-1]
last.activation = "identity"
last.normalization = "none"
last.dropout_rate = 0.0
self.decoder_seq: BlockSequence = BlockFactory.build_sequence(dec_cfgs) if len(dec_cfgs) > 0 else BlockSequence([])
# Tie weights if specified (no-op for now)
if config.tie_weights:
self._tie_weights()
# Initialize weights
self.post_init()
def _tie_weights(self):
"""Tie encoder and decoder weights (transpose relationship)."""
# This is a simplified weight tying - in practice, you might want more sophisticated tying
pass
def get_input_embeddings(self):
"""Get input embeddings (not applicable for basic autoencoder)."""
return None
def set_input_embeddings(self, value):
"""Set input embeddings (not applicable for basic autoencoder)."""
pass
def forward(
self,
input_values: torch.Tensor,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
"""
Forward pass through the autoencoder.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderOutput or tuple: The model outputs.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Apply learnable preprocessing via block (forward only)
if self.pre_block is not None:
input_values = self.pre_block(input_values)
preprocessing_loss = torch.tensor(0.0, device=input_values.device)
# Block-based forward
# Encode through block sequence
enc_out = self.encoder_seq(input_values)
# Sample or project to latent
if self.config.is_variational:
# Use VariationalBlock to encapsulate VAE behavior
self._variational = getattr(self, '_variational', None)
if self._variational is None:
self._variational = VariationalBlock(VariationalBlockConfig(input_dim=enc_out.shape[-1], latent_dim=self.config.latent_dim)).to(enc_out.device)
latent = self._variational(enc_out, training=self.training)
self._mu = self._variational._mu
self._logvar = self._variational._logvar
else:
latent = self.to_latent(enc_out) if self.to_latent is not None else enc_out
self._mu, self._logvar = None, None
# Decode back to input space
reconstructed = self.decoder_seq(latent)
hidden_states = None
if output_hidden_states:
if self.config.is_variational:
hidden_states = (latent, getattr(self, '_mu', None), getattr(self, '_logvar', None))
else:
hidden_states = (latent,)
if not return_dict:
return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)
return AutoencoderOutput(
last_hidden_state=latent,
reconstructed=reconstructed,
hidden_states=hidden_states,
preprocessing_loss=preprocessing_loss,
)
class AutoencoderForReconstruction(PreTrainedModel):
"""
Autoencoder Model with a reconstruction head on top for reconstruction tasks.
This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize the base autoencoder model
self.autoencoder = AutoencoderModel(config)
# Initialize weights
self.post_init()
def get_input_embeddings(self):
"""Get input embeddings."""
return self.autoencoder.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set input embeddings."""
self.autoencoder.set_input_embeddings(value)
def _compute_reconstruction_loss(
self,
reconstructed: torch.Tensor,
target: torch.Tensor
) -> torch.Tensor:
"""Compute reconstruction loss based on the configured loss type."""
if self.config.reconstruction_loss == "mse":
return F.mse_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "bce":
return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "l1":
return F.l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "huber":
return F.huber_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "smooth_l1":
return F.smooth_l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "kl_div":
return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
elif self.config.reconstruction_loss == "cosine":
return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
elif self.config.reconstruction_loss == "focal":
return self._focal_loss(reconstructed, target)
elif self.config.reconstruction_loss == "dice":
return self._dice_loss(reconstructed, target)
elif self.config.reconstruction_loss == "tversky":
return self._tversky_loss(reconstructed, target)
elif self.config.reconstruction_loss == "ssim":
return self._ssim_loss(reconstructed, target)
elif self.config.reconstruction_loss == "perceptual":
return self._perceptual_loss(reconstructed, target)
else:
raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")
def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
"""Compute focal loss for handling class imbalance."""
ce_loss = F.mse_loss(pred, target, reduction="none")
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
return focal_loss.mean()
def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Dice loss for segmentation-like tasks."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
intersection = (pred_flat * target_flat).sum()
dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
return 1 - dice
def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Tversky loss, a generalization of Dice loss."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
true_pos = (pred_flat * target_flat).sum()
false_neg = (target_flat * (1 - pred_flat)).sum()
false_pos = ((1 - target_flat) * pred_flat).sum()
tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
return 1 - tversky
def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute SSIM-based loss (simplified version)."""
# Simplified SSIM for 1D data
mu1 = pred.mean(dim=-1, keepdim=True)
mu2 = target.mean(dim=-1, keepdim=True)
sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)
c1, c2 = 0.01, 0.03
ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
return 1 - ssim.mean()
def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute perceptual loss (simplified version using feature differences)."""
# For simplicity, use L2 loss on normalized features
pred_norm = F.normalize(pred, p=2, dim=-1)
target_norm = F.normalize(target, p=2, dim=-1)
return F.mse_loss(pred_norm, target_norm)
def forward(
self,
input_values: torch.Tensor,
labels: Optional[torch.Tensor] = None,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
"""
Forward pass with reconstruction loss calculation.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# If no labels provided, use input as target (standard autoencoder)
if labels is None:
labels = input_values
# Forward pass through autoencoder
outputs = self.autoencoder(
input_values=input_values,
sequence_lengths=sequence_lengths,
target_length=target_length,
output_hidden_states=output_hidden_states,
return_dict=True,
)
reconstructed = outputs.reconstructed
latent = outputs.last_hidden_state
hidden_states = outputs.hidden_states
# Compute reconstruction loss
recon_loss = self._compute_reconstruction_loss(reconstructed, labels)
# Add regularization losses based on autoencoder type
total_loss = recon_loss
# Add preprocessing loss if available
if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
total_loss += outputs.preprocessing_loss
if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
# KL divergence loss for variational autoencoders
kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1)) # Normalize by batch size and latent dim
total_loss = recon_loss + self.config.beta * kl_loss
elif self.config.is_sparse:
# Sparsity loss for sparse autoencoders
latent = outputs.last_hidden_state
sparsity_loss = torch.mean(torch.abs(latent)) # L1 sparsity
total_loss = recon_loss + 0.1 * sparsity_loss # Sparsity weight
elif self.config.is_contractive:
# Contractive loss - penalize large gradients of hidden representation w.r.t. input
latent = outputs.last_hidden_state
latent.retain_grad()
if latent.grad is not None:
contractive_loss = torch.sum(latent.grad ** 2)
total_loss = recon_loss + 0.1 * contractive_loss
loss = total_loss
if not return_dict:
output = (reconstructed, latent)
if hidden_states is not None:
output = output + (hidden_states,)
return ((loss,) + output) if loss is not None else output
return AutoencoderForReconstructionOutput(
loss=loss,
reconstructed=reconstructed,
last_hidden_state=latent,
hidden_states=hidden_states,
preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
)
|