File size: 32,356 Bytes
ced6e93
 
 
 
 
 
 
 
 
 
8abd44b
ced6e93
0fa67db
 
 
 
 
 
 
ced6e93
 
 
5eda1f5
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b68b61
 
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
 
5b68b61
ced6e93
 
5b68b61
ced6e93
 
 
 
5b68b61
8abd44b
5b68b61
ced6e93
 
 
 
 
 
5b68b61
ced6e93
5b68b61
ced6e93
5b68b61
 
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
 
8abd44b
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
ced6e93
8abd44b
 
 
 
 
ced6e93
8abd44b
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
 
5b68b61
ced6e93
 
5b68b61
ced6e93
 
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
5b68b61
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abd44b
 
 
ced6e93
 
8abd44b
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
ced6e93
8abd44b
 
ced6e93
 
 
 
 
 
8abd44b
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abd44b
 
ced6e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
"""
PyTorch Autoencoder model for Hugging Face Transformers.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, Dict, Any, List
from dataclasses import dataclass
import random
import re

# Import PreTrainedModel in a way that avoids circular imports in some environments (e.g., Databricks)
try:
    from transformers.modeling_utils import PreTrainedModel
except Exception:
    # Fallback if direct path is unavailable
    from transformers import PreTrainedModel

from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import ModelOutput

try:
    from .configuration_autoencoder import AutoencoderConfig  # when loaded via HF dynamic module
except Exception:
    from configuration_autoencoder import AutoencoderConfig  # local usage

# Block-based architecture components
try:
    from .blocks import (
        BlockFactory,
        BlockSequence,
        LinearBlockConfig,
        AttentionBlockConfig,
        RecurrentBlockConfig,
        ConvolutionalBlockConfig,
        VariationalBlockConfig,
        VariationalBlock,
    )  # when in package
except Exception:
    from blocks import (
        BlockFactory,
        BlockSequence,
        LinearBlockConfig,
        AttentionBlockConfig,
        RecurrentBlockConfig,
        ConvolutionalBlockConfig,
        VariationalBlockConfig,
        VariationalBlock,
    )  # local usage

# Shared utilities
try:
    from .utils import _get_activation
except Exception:
    from utils import _get_activation

# Preprocessing components
try:
    from .preprocessing import PreprocessingBlock  # when in package
except Exception:
    from preprocessing import PreprocessingBlock  # local usage


@dataclass
class AutoencoderOutput(ModelOutput):
    """
    Output type of AutoencoderModel.

    Args:
        last_hidden_state (torch.FloatTensor): The latent representation of the input.
        reconstructed (torch.FloatTensor, optional): The reconstructed input.
        hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
        attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
        preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
    """

    last_hidden_state: torch.FloatTensor = None
    reconstructed: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    preprocessing_loss: Optional[torch.FloatTensor] = None


@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
    """
    Output type of AutoencoderForReconstruction.

    Args:
        loss (torch.FloatTensor, optional): The reconstruction loss.
        reconstructed (torch.FloatTensor): The reconstructed input.
        last_hidden_state (torch.FloatTensor): The latent representation.
        hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
        preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
    """

    loss: Optional[torch.FloatTensor] = None
    reconstructed: torch.FloatTensor = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    preprocessing_loss: Optional[torch.FloatTensor] = None


class AutoencoderEncoder(nn.Module):
    """Encoder part of the autoencoder."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config

        # Build encoder layers
        layers = []
        input_dim = config.input_dim

        for hidden_dim in config.hidden_dims:
            layers.append(nn.Linear(input_dim, hidden_dim))

            if config.use_batch_norm:
                layers.append(nn.BatchNorm1d(hidden_dim))

            layers.append(self._get_activation(config.activation))

            if config.dropout_rate > 0:
                layers.append(nn.Dropout(config.dropout_rate))

            input_dim = hidden_dim

        self.encoder = nn.Sequential(*layers)

        # For variational autoencoders, we need separate layers for mean and log variance
        if config.is_variational:
            self.fc_mu = nn.Linear(input_dim, config.latent_dim)
            self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
        else:
            # Standard encoder output
            self.fc_out = nn.Linear(input_dim, config.latent_dim)


    def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
        """Forward pass through encoder."""
        # Add noise for denoising autoencoders
        if self.config.is_denoising and self.training:
            noise = torch.randn_like(x) * self.config.noise_factor
            x = x + noise

        encoded = self.encoder(x)

        if self.config.is_variational:
            # Variational autoencoder: return mean, log variance, and sampled latent
            mu = self.fc_mu(encoded)
            logvar = self.fc_logvar(encoded)

            # Reparameterization trick
            if self.training:
                std = torch.exp(0.5 * logvar)
                eps = torch.randn_like(std)
                z = mu + eps * std
            else:
                z = mu  # Use mean during inference

            return z, mu, logvar
        else:
            # Standard autoencoder
            latent = self.fc_out(encoded)

            # Add sparsity constraint for sparse autoencoders
            if self.config.is_sparse and self.training:
                # Apply L1 regularization to encourage sparsity
                latent = F.relu(latent)  # Ensure non-negative activations

            return latent


class AutoencoderDecoder(nn.Module):
    """Decoder part of the autoencoder."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config

        # Build decoder layers (reverse of encoder)
        layers = []
        input_dim = config.latent_dim
        decoder_dims = config.decoder_dims + [config.input_dim]

        for i, hidden_dim in enumerate(decoder_dims):
            layers.append(nn.Linear(input_dim, hidden_dim))

            # Don't add batch norm, activation, or dropout to the final layer
            if i < len(decoder_dims) - 1:
                if config.use_batch_norm:
                    layers.append(nn.BatchNorm1d(hidden_dim))

                layers.append(_get_activation(config.activation))

                if config.dropout_rate > 0:
                    layers.append(nn.Dropout(config.dropout_rate))
            else:
                # Final layer - add appropriate activation based on reconstruction loss
                if config.reconstruction_loss == "bce":
                    layers.append(nn.Sigmoid())

            input_dim = hidden_dim

        self.decoder = nn.Sequential(*layers)


    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass through decoder."""
        return self.decoder(x)


class RecurrentEncoder(nn.Module):
    """Recurrent encoder for sequence data."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config

        # Get RNN class
        if config.rnn_type == "lstm":
            rnn_class = nn.LSTM
        elif config.rnn_type == "gru":
            rnn_class = nn.GRU
        elif config.rnn_type == "rnn":
            rnn_class = nn.RNN
        else:
            raise ValueError(f"Unknown RNN type: {config.rnn_type}")

        # Create RNN layers
        self.rnn = rnn_class(
            input_size=config.input_dim,
            hidden_size=config.latent_dim,
            num_layers=config.num_layers,
            batch_first=True,
            dropout=config.dropout_rate if config.num_layers > 1 else 0,
            bidirectional=config.bidirectional
        )

        # Projection layer for bidirectional RNN
        if config.bidirectional:
            self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
        else:
            self.projection = None

        # Batch normalization
        if config.use_batch_norm:
            self.batch_norm = nn.BatchNorm1d(config.latent_dim)
        else:
            self.batch_norm = None

        # Dropout
        if config.dropout_rate > 0:
            self.dropout = nn.Dropout(config.dropout_rate)
        else:
            self.dropout = None

    def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
        """
        Forward pass through recurrent encoder.

        Args:
            x: Input tensor of shape (batch_size, seq_len, input_dim)
            lengths: Sequence lengths for packed sequences (optional)

        Returns:
            Encoded representation or tuple for VAE
        """
        batch_size, seq_len, _ = x.shape

        # Add noise for denoising autoencoders
        if self.config.is_denoising and self.training:
            noise = torch.randn_like(x) * self.config.noise_factor
            x = x + noise

        # Pack sequences if lengths provided
        if lengths is not None:
            x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)

        # RNN forward pass
        if self.config.rnn_type == "lstm":
            output, (hidden, cell) = self.rnn(x)
        else:
            output, hidden = self.rnn(x)
            cell = None

        # Unpack if necessary
        if lengths is not None:
            output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)

        # Use last hidden state as encoding
        if self.config.bidirectional:
            # Concatenate forward and backward hidden states
            hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
            hidden = hidden[-1]  # Take last layer
            hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1)  # Concatenate directions

            # Project to latent dimension
            if self.projection:
                hidden = self.projection(hidden)
        else:
            hidden = hidden[-1]  # Take last layer

        # Apply batch normalization
        if self.batch_norm:
            hidden = self.batch_norm(hidden)

        # Apply dropout
        if self.dropout and self.training:
            hidden = self.dropout(hidden)

        # Handle variational encoding
        if self.config.is_variational:
            # Split hidden into mean and log variance
            mu = hidden[:, :self.config.latent_dim // 2]
            logvar = hidden[:, self.config.latent_dim // 2:]

            # Reparameterization trick
            if self.training:
                std = torch.exp(0.5 * logvar)
                eps = torch.randn_like(std)
                z = mu + eps * std
            else:
                z = mu

            return z, mu, logvar
        else:
            return hidden


class RecurrentDecoder(nn.Module):
    """Recurrent decoder for sequence data."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config

        # Get RNN class
        if config.rnn_type == "lstm":
            rnn_class = nn.LSTM
        elif config.rnn_type == "gru":
            rnn_class = nn.GRU
        elif config.rnn_type == "rnn":
            rnn_class = nn.RNN
        else:
            raise ValueError(f"Unknown RNN type: {config.rnn_type}")

        # Create RNN layers
        self.rnn = rnn_class(
            input_size=config.latent_dim,
            hidden_size=config.latent_dim,
            num_layers=config.num_layers,
            batch_first=True,
            dropout=config.dropout_rate if config.num_layers > 1 else 0,
            bidirectional=False  # Decoder is always unidirectional
        )

        # Output projection
        self.output_projection = nn.Linear(config.latent_dim, config.input_dim)

        # Batch normalization
        if config.use_batch_norm:
            self.batch_norm = nn.BatchNorm1d(config.latent_dim)
        else:
            self.batch_norm = None

        # Dropout
        if config.dropout_rate > 0:
            self.dropout = nn.Dropout(config.dropout_rate)
        else:
            self.dropout = None

    def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Forward pass through recurrent decoder.

        Args:
            z: Latent representation of shape (batch_size, latent_dim)
            target_length: Length of sequence to generate
            target_sequence: Target sequence for teacher forcing (optional)

        Returns:
            Decoded sequence of shape (batch_size, seq_len, input_dim)
        """
        batch_size = z.size(0)
        device = z.device

        # Initialize hidden state with latent representation
        if self.config.rnn_type == "lstm":
            h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
            c_0 = torch.zeros_like(h_0)
            hidden = (h_0, c_0)
        else:
            hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)

        outputs = []

        # Initialize input (can be learned or zero)
        current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)

        for t in range(target_length):
            # Teacher forcing decision
            use_teacher_forcing = (target_sequence is not None and
                                 self.training and
                                 random.random() < self.config.teacher_forcing_ratio)

            if use_teacher_forcing and t > 0:
                # Use previous target as input
                current_input = target_sequence[:, t-1:t, :]
                # Project to latent dimension if needed
                if current_input.size(-1) != self.config.latent_dim:
                    current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)

            # RNN forward step
            if self.config.rnn_type == "lstm":
                output, hidden = self.rnn(current_input, hidden)
            else:
                output, hidden = self.rnn(current_input, hidden)

            # Apply batch normalization and dropout
            output_flat = output.squeeze(1)  # Remove sequence dimension

            if self.batch_norm:
                output_flat = self.batch_norm(output_flat)

            if self.dropout and self.training:
                output_flat = self.dropout(output_flat)

            # Project to output dimension
            step_output = self.output_projection(output_flat)
            outputs.append(step_output.unsqueeze(1))

            # Use output as next input (for non-teacher forcing)
            if not use_teacher_forcing:
                # Project output back to latent dimension for next step
                current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)

        # Concatenate all outputs
        return torch.cat(outputs, dim=1)


class AutoencoderModel(PreTrainedModel):
    """
    The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.

    This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
    PyTorch documentation for all matter related to general usage and behavior.
    """

    config_class = AutoencoderConfig
    base_model_prefix = "autoencoder"
    supports_gradient_checkpointing = False

    def __init__(self, config: AutoencoderConfig):
        super().__init__(config)
        self.config = config

        # Initialize learnable preprocessing as a single forward block only
        if config.has_preprocessing:
            self.pre_block = PreprocessingBlock(config, inverse=False)
        else:
            self.pre_block = None

        # Build block-based encoder/decoder sequences (breaking change refactor)
        norm = "batch" if config.use_batch_norm else "none"

        def default_linear_sequence(in_dim: int, dims: List[int], activation: str, normalization: str, dropout: float) -> List[LinearBlockConfig]:
            cfgs: List[LinearBlockConfig] = []
            prev = in_dim
            for h in dims:
                cfgs.append(
                    LinearBlockConfig(
                        input_dim=prev,
                        output_dim=h,
                        activation=activation,
                        normalization=normalization,
                        dropout_rate=dropout,
                        use_residual=False,
                    )
                )
                prev = h
            return cfgs

        # Encoder: use explicit block list if provided, else hidden_dims default
        if getattr(config, "encoder_blocks", None):
            enc_cfgs = config.encoder_blocks
            # Compute enc_out_dim from last block's output_dim if linear/conv, else assume input_dim
            last_out = None
            for b in enc_cfgs:
                if isinstance(b, dict):
                    last_out = b.get("output_dim", last_out)
                else:
                    last_out = getattr(b, "output_dim", last_out)
            enc_out_dim = last_out or (config.hidden_dims[-1] if config.hidden_dims else config.input_dim)
        else:
            enc_cfgs = default_linear_sequence(config.input_dim, config.hidden_dims, config.activation, norm, config.dropout_rate)
            enc_out_dim = config.hidden_dims[-1] if config.hidden_dims else config.input_dim
        base_encoder_seq: BlockSequence = BlockFactory.build_sequence(enc_cfgs) if len(enc_cfgs) > 0 else BlockSequence([])
        # Do not inject pre_block into encoder sequence; apply it explicitly in forward
        self.encoder_seq = base_encoder_seq

        # Project to latent
        if config.is_variational:
            self.fc_mu = nn.Linear(enc_out_dim, config.latent_dim)
            self.fc_logvar = nn.Linear(enc_out_dim, config.latent_dim)
            self.to_latent = None
        else:
            self.fc_mu = None
            self.fc_logvar = None
            self.to_latent = nn.Linear(enc_out_dim, config.latent_dim)

        # Decoder: use explicit block list if provided, else default MLP back to input
        if getattr(config, "decoder_blocks", None):
            dec_cfgs = config.decoder_blocks
        else:
            dec_dims = config.decoder_dims + [config.input_dim]
            dec_cfgs = default_linear_sequence(config.latent_dim, dec_dims, config.activation, norm, config.dropout_rate)
            # For final projection to input_dim: identity activation and no norm/dropout
            if len(dec_cfgs) > 0:
                last = dec_cfgs[-1]
                last.activation = "identity"
                last.normalization = "none"
                last.dropout_rate = 0.0
        self.decoder_seq: BlockSequence = BlockFactory.build_sequence(dec_cfgs) if len(dec_cfgs) > 0 else BlockSequence([])

        # Tie weights if specified (no-op for now)
        if config.tie_weights:
            self._tie_weights()

        # Initialize weights
        self.post_init()

    def _tie_weights(self):
        """Tie encoder and decoder weights (transpose relationship)."""
        # This is a simplified weight tying - in practice, you might want more sophisticated tying
        pass

    def get_input_embeddings(self):
        """Get input embeddings (not applicable for basic autoencoder)."""
        return None

    def set_input_embeddings(self, value):
        """Set input embeddings (not applicable for basic autoencoder)."""
        pass

    def forward(
        self,
        input_values: torch.Tensor,
        sequence_lengths: Optional[torch.Tensor] = None,
        target_length: Optional[int] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
        """
        Forward pass through the autoencoder.

        Args:
            input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
                - Standard: (batch_size, input_dim)
                - Recurrent: (batch_size, seq_len, input_dim)
            sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
            target_length (int, optional): Target sequence length for recurrent decoder.
            output_hidden_states (bool, optional): Whether to return hidden states.
            return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.

        Returns:
            AutoencoderOutput or tuple: The model outputs.
        """
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Apply learnable preprocessing via block (forward only)
        if self.pre_block is not None:
            input_values = self.pre_block(input_values)
        preprocessing_loss = torch.tensor(0.0, device=input_values.device)

        # Block-based forward
        # Encode through block sequence
        enc_out = self.encoder_seq(input_values)

        # Sample or project to latent
        if self.config.is_variational:
            # Use VariationalBlock to encapsulate VAE behavior
            self._variational = getattr(self, '_variational', None)
            if self._variational is None:
                self._variational = VariationalBlock(VariationalBlockConfig(input_dim=enc_out.shape[-1], latent_dim=self.config.latent_dim)).to(enc_out.device)
            latent = self._variational(enc_out, training=self.training)
            self._mu = self._variational._mu
            self._logvar = self._variational._logvar
        else:
            latent = self.to_latent(enc_out) if self.to_latent is not None else enc_out
            self._mu, self._logvar = None, None

        # Decode back to input space
        reconstructed = self.decoder_seq(latent)



        hidden_states = None
        if output_hidden_states:
            if self.config.is_variational:
                hidden_states = (latent, getattr(self, '_mu', None), getattr(self, '_logvar', None))
            else:
                hidden_states = (latent,)

        if not return_dict:
            return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)

        return AutoencoderOutput(
            last_hidden_state=latent,
            reconstructed=reconstructed,
            hidden_states=hidden_states,
            preprocessing_loss=preprocessing_loss,
        )


class AutoencoderForReconstruction(PreTrainedModel):
    """
    Autoencoder Model with a reconstruction head on top for reconstruction tasks.

    This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
    """

    config_class = AutoencoderConfig
    base_model_prefix = "autoencoder"

    def __init__(self, config: AutoencoderConfig):
        super().__init__(config)
        self.config = config

        # Initialize the base autoencoder model
        self.autoencoder = AutoencoderModel(config)

        # Initialize weights
        self.post_init()



    def get_input_embeddings(self):
        """Get input embeddings."""
        return self.autoencoder.get_input_embeddings()

    def set_input_embeddings(self, value):
        """Set input embeddings."""
        self.autoencoder.set_input_embeddings(value)

    def _compute_reconstruction_loss(
        self,
        reconstructed: torch.Tensor,
        target: torch.Tensor
    ) -> torch.Tensor:
        """Compute reconstruction loss based on the configured loss type."""
        if self.config.reconstruction_loss == "mse":
            return F.mse_loss(reconstructed, target, reduction="mean")
        elif self.config.reconstruction_loss == "bce":
            return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
        elif self.config.reconstruction_loss == "l1":
            return F.l1_loss(reconstructed, target, reduction="mean")
        elif self.config.reconstruction_loss == "huber":
            return F.huber_loss(reconstructed, target, reduction="mean")
        elif self.config.reconstruction_loss == "smooth_l1":
            return F.smooth_l1_loss(reconstructed, target, reduction="mean")
        elif self.config.reconstruction_loss == "kl_div":
            return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
        elif self.config.reconstruction_loss == "cosine":
            return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
        elif self.config.reconstruction_loss == "focal":
            return self._focal_loss(reconstructed, target)
        elif self.config.reconstruction_loss == "dice":
            return self._dice_loss(reconstructed, target)
        elif self.config.reconstruction_loss == "tversky":
            return self._tversky_loss(reconstructed, target)
        elif self.config.reconstruction_loss == "ssim":
            return self._ssim_loss(reconstructed, target)
        elif self.config.reconstruction_loss == "perceptual":
            return self._perceptual_loss(reconstructed, target)
        else:
            raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")

    def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
        """Compute focal loss for handling class imbalance."""
        ce_loss = F.mse_loss(pred, target, reduction="none")
        pt = torch.exp(-ce_loss)
        focal_loss = alpha * (1 - pt) ** gamma * ce_loss
        return focal_loss.mean()

    def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
        """Compute Dice loss for segmentation-like tasks."""
        pred_flat = pred.view(-1)
        target_flat = target.view(-1)
        intersection = (pred_flat * target_flat).sum()
        dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
        return 1 - dice

    def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
        """Compute Tversky loss, a generalization of Dice loss."""
        pred_flat = pred.view(-1)
        target_flat = target.view(-1)
        true_pos = (pred_flat * target_flat).sum()
        false_neg = (target_flat * (1 - pred_flat)).sum()
        false_pos = ((1 - target_flat) * pred_flat).sum()
        tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
        return 1 - tversky

    def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        """Compute SSIM-based loss (simplified version)."""
        # Simplified SSIM for 1D data
        mu1 = pred.mean(dim=-1, keepdim=True)
        mu2 = target.mean(dim=-1, keepdim=True)
        sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
        sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
        sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)

        c1, c2 = 0.01, 0.03
        ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
        return 1 - ssim.mean()

    def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        """Compute perceptual loss (simplified version using feature differences)."""
        # For simplicity, use L2 loss on normalized features
        pred_norm = F.normalize(pred, p=2, dim=-1)
        target_norm = F.normalize(target, p=2, dim=-1)
        return F.mse_loss(pred_norm, target_norm)

    def forward(
        self,
        input_values: torch.Tensor,
        labels: Optional[torch.Tensor] = None,
        sequence_lengths: Optional[torch.Tensor] = None,
        target_length: Optional[int] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
        """
        Forward pass with reconstruction loss calculation.

        Args:
            input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
                - Standard: (batch_size, input_dim)
                - Recurrent: (batch_size, seq_len, input_dim)
            labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
            sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
            target_length (int, optional): Target sequence length for recurrent decoder.
            output_hidden_states (bool, optional): Whether to return hidden states.
            return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.

        Returns:
            AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # If no labels provided, use input as target (standard autoencoder)
        if labels is None:
            labels = input_values

        # Forward pass through autoencoder
        outputs = self.autoencoder(
            input_values=input_values,
            sequence_lengths=sequence_lengths,
            target_length=target_length,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        reconstructed = outputs.reconstructed
        latent = outputs.last_hidden_state
        hidden_states = outputs.hidden_states

        # Compute reconstruction loss
        recon_loss = self._compute_reconstruction_loss(reconstructed, labels)

        # Add regularization losses based on autoencoder type
        total_loss = recon_loss

        # Add preprocessing loss if available
        if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
            total_loss += outputs.preprocessing_loss

        if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
            # KL divergence loss for variational autoencoders
            kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
            kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1))  # Normalize by batch size and latent dim
            total_loss = recon_loss + self.config.beta * kl_loss

        elif self.config.is_sparse:
            # Sparsity loss for sparse autoencoders
            latent = outputs.last_hidden_state
            sparsity_loss = torch.mean(torch.abs(latent))  # L1 sparsity
            total_loss = recon_loss + 0.1 * sparsity_loss  # Sparsity weight

        elif self.config.is_contractive:
            # Contractive loss - penalize large gradients of hidden representation w.r.t. input
            latent = outputs.last_hidden_state
            latent.retain_grad()
            if latent.grad is not None:
                contractive_loss = torch.sum(latent.grad ** 2)
                total_loss = recon_loss + 0.1 * contractive_loss

        loss = total_loss

        if not return_dict:
            output = (reconstructed, latent)
            if hidden_states is not None:
                output = output + (hidden_states,)
            return ((loss,) + output) if loss is not None else output

        return AutoencoderForReconstructionOutput(
            loss=loss,
            reconstructed=reconstructed,
            last_hidden_state=latent,
            hidden_states=hidden_states,
            preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
        )