AndrewMayesPrezzee commited on
Commit
9d44f43
·
1 Parent(s): 5eda1f5

Feat - Install

Browse files
Files changed (3) hide show
  1. README.md +32 -0
  2. config.json +37 -0
  3. model.safetensors +0 -0
README.md CHANGED
@@ -16,6 +16,37 @@ tags:
16
 
17
  A complete autoencoder implementation that integrates seamlessly with the Hugging Face Transformers ecosystem, providing all the standard functionality you expect from transformer models.
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ## 🚀 Features
20
 
21
  - **Full Hugging Face Integration**: Compatible with `AutoModel`, `AutoConfig`, and `AutoTokenizer` patterns
@@ -86,6 +117,7 @@ print(f"Latent shape: {outputs.last_hidden_state.shape}")
86
  print(f"Reconstructed shape: {outputs.reconstructed.shape}")
87
  ```
88
 
 
89
  ### Training with Hugging Face Trainer
90
 
91
  ```python
 
16
 
17
  A complete autoencoder implementation that integrates seamlessly with the Hugging Face Transformers ecosystem, providing all the standard functionality you expect from transformer models.
18
 
19
+
20
+ ### Install-and-Use from the Hub (code repo)
21
+
22
+ If you want to use the implementation directly from the Hub code repository (without a packaged pip install), you can download the repo and add it to `sys.path`:
23
+
24
+ ```python
25
+ from huggingface_hub import snapshot_download
26
+ import sys, torch
27
+
28
+ repo_dir = snapshot_download(
29
+ "amaye15/autoencoder",
30
+ repo_type="model",
31
+ allow_patterns=["*.py", "config.json", "*.safetensors"],
32
+ )
33
+ sys.path.append(repo_dir)
34
+
35
+ from configuration_autoencoder import AutoencoderConfig
36
+ from modeling_autoencoder import AutoencoderForReconstruction
37
+
38
+ # Load placeholder weights from the same repo (or your own trained weights)
39
+ model = AutoencoderForReconstruction.from_pretrained(
40
+ "amaye15/autoencoder",
41
+ trust_remote_code=True,
42
+ )
43
+
44
+ # Quick smoke test
45
+ x = torch.randn(8, 20)
46
+ outputs = model(input_values=x)
47
+ print("Reconstructed:", tuple(outputs.reconstructed.shape), "Latent:", tuple(outputs.last_hidden_state.shape))
48
+ ```
49
+
50
  ## 🚀 Features
51
 
52
  - **Full Hugging Face Integration**: Compatible with `AutoModel`, `AutoConfig`, and `AutoTokenizer` patterns
 
117
  print(f"Reconstructed shape: {outputs.reconstructed.shape}")
118
  ```
119
 
120
+
121
  ### Training with Hugging Face Trainer
122
 
123
  ```python
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "AutoencoderForReconstruction"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_autoencoder.AutoencoderConfig",
8
+ "AutoModel": "modeling_autoencoder.AutoencoderForReconstruction"
9
+ },
10
+ "autoencoder_type": "classic",
11
+ "beta": 1.0,
12
+ "bidirectional": true,
13
+ "dropout_rate": 0.1,
14
+ "flow_coupling_layers": 2,
15
+ "hidden_dims": [
16
+ 16,
17
+ 12
18
+ ],
19
+ "input_dim": 20,
20
+ "latent_dim": 8,
21
+ "learn_inverse_preprocessing": true,
22
+ "model_type": "autoencoder",
23
+ "noise_factor": 0.1,
24
+ "num_layers": 2,
25
+ "preprocessing_hidden_dim": 32,
26
+ "preprocessing_num_layers": 2,
27
+ "preprocessing_type": "robust_scaler",
28
+ "reconstruction_loss": "mse",
29
+ "rnn_type": "lstm",
30
+ "sequence_length": null,
31
+ "teacher_forcing_ratio": 0.5,
32
+ "tie_weights": false,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.55.2",
35
+ "use_batch_norm": true,
36
+ "use_learnable_preprocessing": true
37
+ }
model.safetensors ADDED
Binary file (30.7 kB). View file