# Autoencoder Implementation for Hugging Face Transformers A complete autoencoder implementation that integrates seamlessly with the Hugging Face Transformers ecosystem, providing all the standard functionality you expect from transformer models. ## ๐Ÿš€ Features - **Full Hugging Face Integration**: Compatible with `AutoModel`, `AutoConfig`, and `AutoTokenizer` patterns - **Standard Training Workflows**: Works with `Trainer`, `TrainingArguments`, and all HF training utilities - **Model Hub Compatible**: Save and share models on Hugging Face Hub with `push_to_hub()` - **Flexible Architecture**: Configurable encoder-decoder architecture with various activation functions - **Multiple Loss Functions**: Support for MSE, BCE, L1, Huber, Smooth L1, KL Divergence, Cosine, Focal, Dice, Tversky, SSIM, and Perceptual loss - **Multiple Autoencoder Types (7)**: Classic, Variational (VAE), Beta-VAE, Denoising, Sparse, Contractive, and Recurrent autoencoders - **Extended Activation Functions**: 18+ activation functions including ReLU, GELU, Swish, Mish, ELU, and more - **Learnable Preprocessing**: Neural Scaler and Normalizing Flow preprocessors (2D and 3D tensors) - **Extensible Design**: Easy to extend for new autoencoder variants and custom loss functions - **Production Ready**: Proper serialization, checkpointing, and inference support ## ๐Ÿ“ฆ Installation ```bash uv sync # or: pip install -e . ``` Dependencies (see pyproject.toml): - `torch>=2.8.0` - `transformers>=4.55.2` - `numpy>=2.3.2` - `scikit-learn>=1.7.1` - `datasets>=4.0.0` - `accelerate>=1.10.0` ## ๐Ÿ—๏ธ Architecture Note: This repository has been trimmed to essentials for easy reuse and distribution. Example scripts and tests were removed by request. The implementation consists of three main components: ### 1. AutoencoderConfig Configuration class that inherits from `PretrainedConfig`: - Defines model architecture parameters - Handles validation and serialization - Enables `AutoConfig.from_pretrained()` functionality ### 2. AutoencoderModel Base model class that inherits from `PreTrainedModel`: - Implements encoder-decoder architecture - Provides latent space representation - Returns structured outputs with `AutoencoderOutput` ### 3. AutoencoderForReconstruction Task-specific model for reconstruction: - Adds reconstruction loss calculation - Compatible with `Trainer` for easy training - Returns `AutoencoderForReconstructionOutput` with loss ## ๐Ÿ”ง Quick Start ### Basic Usage ```python from configuration_autoencoder import AutoencoderConfig from modeling_autoencoder import AutoencoderForReconstruction import torch # Create configuration config = AutoencoderConfig( input_dim=784, # Input dimensionality (e.g., 28x28 images flattened) hidden_dims=[512, 256], # Encoder hidden layers latent_dim=64, # Latent space dimension activation="gelu", # Activation function (18+ options available) reconstruction_loss="mse", # Loss function (12+ options available) autoencoder_type="classic", # Autoencoder type (7 types available) # Optional learnable preprocessing use_learnable_preprocessing=True, preprocessing_type="neural_scaler", # or "normalizing_flow" ) # Create model model = AutoencoderForReconstruction(config) # Forward pass input_data = torch.randn(32, 784) # Batch of 32 samples outputs = model(input_values=input_data) print(f"Reconstruction loss: {outputs.loss}") print(f"Latent shape: {outputs.last_hidden_state.shape}") print(f"Reconstructed shape: {outputs.reconstructed.shape}") ``` ### Training with Hugging Face Trainer ```python from transformers import Trainer, TrainingArguments from torch.utils.data import Dataset class AutoencoderDataset(Dataset): def __init__(self, data): self.data = torch.FloatTensor(data) def __len__(self): return len(self.data) def __getitem__(self, idx): return { "input_values": self.data[idx], "labels": self.data[idx] # For autoencoder, input = target } # Prepare data train_dataset = AutoencoderDataset(your_training_data) val_dataset = AutoencoderDataset(your_validation_data) # Training arguments training_args = TrainingArguments( output_dir="./autoencoder_output", num_train_epochs=10, per_device_train_batch_size=64, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", evaluation_strategy="steps", eval_steps=500, save_steps=1000, load_best_model_at_end=True, ) # Create trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) # Train trainer.train() # Save model model.save_pretrained("./my_autoencoder") config.save_pretrained("./my_autoencoder") ``` ### Using AutoModel Framework ```python from register_autoencoder import register_autoencoder_models from transformers import AutoConfig, AutoModel # Register models with AutoModel framework register_autoencoder_models() # Now you can use standard HF patterns config = AutoConfig.from_pretrained("./my_autoencoder") model = AutoModel.from_pretrained("./my_autoencoder") # Use the model outputs = model(input_values=your_data) ``` ## โš™๏ธ Configuration Options The `AutoencoderConfig` class supports extensive customization: ```python config = AutoencoderConfig( input_dim=784, # Input dimension hidden_dims=[512, 256, 128], # Encoder hidden layers latent_dim=64, # Latent space dimension activation="gelu", # Activation function (see full list below) dropout_rate=0.1, # Dropout rate (0.0 to 1.0) use_batch_norm=True, # Use batch normalization tie_weights=False, # Tie encoder/decoder weights reconstruction_loss="mse", # Loss function (see full list below) autoencoder_type="variational", # Autoencoder type (see types below) beta=0.5, # Beta parameter for ฮฒ-VAE temperature=1.0, # Temperature for Gumbel softmax noise_factor=0.1, # Noise factor for denoising AE # Recurrent autoencoder parameters rnn_type="lstm", # RNN type: "lstm", "gru", "rnn" num_layers=2, # Number of RNN layers bidirectional=True, # Bidirectional encoding sequence_length=None, # Fixed sequence length (None for variable) teacher_forcing_ratio=0.5, # Teacher forcing ratio during training # Learnable preprocessing parameters use_learnable_preprocessing=False, # Enable learnable preprocessing preprocessing_type="none", # "none", "neural_scaler", "normalizing_flow" preprocessing_hidden_dim=64, # Hidden dimension for preprocessing networks preprocessing_num_layers=2, # Number of layers in preprocessing networks learn_inverse_preprocessing=True, # Learn inverse transformation flow_coupling_layers=4, # Number of coupling layers for flows ) ``` ### ๐ŸŽ›๏ธ Available Activation Functions **Standard Activations:** - `relu`, `leaky_relu`, `relu6`, `elu`, `prelu` - `tanh`, `sigmoid`, `hardsigmoid`, `hardtanh` - `gelu`, `swish`, `silu`, `hardswish` - `mish`, `softplus`, `softsign`, `tanhshrink`, `threshold` ### ๐Ÿ“Š Available Loss Functions **Regression Losses:** - `mse` - Mean Squared Error - `l1` - L1/MAE Loss - `huber` - Huber Loss - `smooth_l1` - Smooth L1 Loss **Classification/Probability Losses:** - `bce` - Binary Cross Entropy - `kl_div` - KL Divergence - `focal` - Focal Loss **Similarity Losses:** - `cosine` - Cosine Similarity Loss - `ssim` - Structural Similarity Loss - `perceptual` - Perceptual Loss **Segmentation Losses:** - `dice` - Dice Loss - `tversky` - Tversky Loss ### ๐Ÿ—๏ธ Available Autoencoder Types **Classic Autoencoder (`classic`)** - Standard encoder-decoder architecture - Direct reconstruction loss minimization **Variational Autoencoder (`variational`)** - Probabilistic latent space with mean and variance - KL divergence regularization - Reparameterization trick for sampling **Beta-VAE (`beta_vae`)** - Variational autoencoder with adjustable ฮฒ parameter - Better disentanglement of latent factors **Denoising Autoencoder (`denoising`)** - Adds noise to input during training - Learns robust representations - Configurable noise factor **Sparse Autoencoder (`sparse`)** - Encourages sparse latent representations - L1 regularization on latent activations - Useful for feature selection **Contractive Autoencoder (`contractive`)** - Penalizes large gradients of latent w.r.t. input - Learns smooth manifold representations - Robust to small input perturbations **Recurrent Autoencoder (`recurrent`)** - LSTM/GRU/RNN encoder-decoder architecture - Bidirectional encoding for better sequence representations - Variable length sequence support with padding - Teacher forcing during training for stable learning - Sequence-to-sequence reconstruction ``` ## ๐Ÿ“Š Model Outputs ### AutoencoderOutput ```python @dataclass class AutoencoderOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None # Latent representation reconstructed: torch.FloatTensor = None # Reconstructed input hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states attentions: Tuple[torch.FloatTensor] = None # Not used ``` ### AutoencoderForReconstructionOutput ```python @dataclass class AutoencoderForReconstructionOutput(ModelOutput): loss: torch.FloatTensor = None # Reconstruction loss reconstructed: torch.FloatTensor = None # Reconstructed input last_hidden_state: torch.FloatTensor = None # Latent representation hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states ``` ## ๐Ÿ”ฌ Advanced Usage ### Custom Loss Functions You can easily extend the model with custom loss functions: ```python class CustomAutoencoder(AutoencoderForReconstruction): def _compute_reconstruction_loss(self, reconstructed, target): # Custom loss implementation return your_custom_loss(reconstructed, target) ``` ### Recurrent Autoencoder for Sequences Perfect for time series, text, and sequential data: ```python config = AutoencoderConfig( input_dim=50, # Feature dimension per timestep latent_dim=32, # Compressed representation size autoencoder_type="recurrent", rnn_type="lstm", # or "gru", "rnn" num_layers=2, # Number of RNN layers bidirectional=True, # Bidirectional encoding teacher_forcing_ratio=0.7, # Teacher forcing during training sequence_length=None # Variable length sequences ) # Usage with sequence data model = AutoencoderForReconstruction(config) sequence_data = torch.randn(batch_size, seq_len, input_dim) outputs = model(input_values=sequence_data) ``` ### Learnable Preprocessing Deep learning-based data normalization that adapts to your data: ```python # Neural Scaler - Learnable alternative to StandardScaler config = AutoencoderConfig( input_dim=20, latent_dim=10, use_learnable_preprocessing=True, preprocessing_type="neural_scaler", preprocessing_hidden_dim=64 ) # Normalizing Flow - Invertible transformations config = AutoencoderConfig( input_dim=20, latent_dim=10, use_learnable_preprocessing=True, preprocessing_type="normalizing_flow", flow_coupling_layers=4 ) # Works with all autoencoder types and sequence data model = AutoencoderForReconstruction(config) outputs = model(input_values=data) print(f"Preprocessing loss: {outputs.preprocessing_loss}") ``` ### Variational Autoencoder Extension The configuration supports variational autoencoders: ```python config = AutoencoderConfig( autoencoder_type="variational", beta=0.5, # ฮฒ-VAE parameter # ... other parameters ) ``` ### Integration with Datasets Library ```python from datasets import Dataset # Convert your data to HF Dataset dataset = Dataset.from_dict({ "input_values": your_data_list }) # Use with Trainer trainer = Trainer( model=model, train_dataset=dataset, # ... other arguments ) ``` ## ๐Ÿงช Testing This repository has been trimmed to essential files. Example scripts and test files were removed by request. You can create your own quick checks using the Quick Start snippet above. ## ๐Ÿ“ Project Structure ``` autoencoder/ โ”œโ”€โ”€ __init__.py # Package initialization โ”œโ”€โ”€ configuration_autoencoder.py # Configuration class โ”œโ”€โ”€ modeling_autoencoder.py # Model implementations โ”œโ”€โ”€ register_autoencoder.py # AutoModel registration โ”œโ”€โ”€ example_usage.py # Usage examples โ”œโ”€โ”€ test_save_load.py # Test suite โ”œโ”€โ”€ requirements.txt # Dependencies โ””โ”€โ”€ README.md # This file ``` ## ๐Ÿค Contributing This implementation follows Hugging Face conventions and can be easily extended: 1. **Adding new architectures**: Extend `AutoencoderModel` or create new model classes 2. **Custom configurations**: Add parameters to `AutoencoderConfig` 3. **Task-specific heads**: Create new classes like `AutoencoderForReconstruction` 4. **Integration**: Register new models with the AutoModel framework ## ๐Ÿ“š References - [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers) - [Custom Models Guide](https://huggingface.co/docs/transformers/custom_models) - [AutoModel Documentation](https://huggingface.co/docs/transformers/model_doc/auto) ## ๐ŸŽฏ Use Cases This autoencoder implementation is perfect for: - **Dimensionality Reduction**: Compress high-dimensional data to lower dimensions - **Anomaly Detection**: Identify outliers based on reconstruction error - **Data Denoising**: Remove noise from corrupted data - **Feature Learning**: Learn meaningful representations for downstream tasks - **Data Generation**: Generate new samples similar to training data - **Pretraining**: Initialize encoders for other tasks ## ๐Ÿ” Model Comparison | Feature | Standard PyTorch | This Implementation | |---------|------------------|-------------------| | HF Integration | โŒ | โœ… | | AutoModel Support | โŒ | โœ… | | Trainer Compatible | โŒ | โœ… | | Hub Integration | โŒ | โœ… | | Config Management | Manual | โœ… Automatic | | Serialization | Manual | โœ… Built-in | | Checkpointing | Manual | โœ… Built-in | ## ๐Ÿš€ Performance Tips 1. **Batch Size**: Use larger batch sizes for better GPU utilization 2. **Learning Rate**: Start with 1e-3 and adjust based on convergence 3. **Architecture**: Gradually decrease hidden dimensions for better compression 4. **Regularization**: Use dropout and batch normalization for better generalization 5. **Loss Function**: Choose appropriate loss based on your data type ## ๐Ÿ“„ License This implementation is provided as an example and follows the same license terms as Hugging Face Transformers.