anktechsol commited on
Commit
ba2159e
ยท
verified ยท
1 Parent(s): db067f7

Remove qwen references and update to Anki 2.5

Browse files
Files changed (1) hide show
  1. README.md +15 -22
README.md CHANGED
@@ -15,7 +15,6 @@ language:
15
  - as
16
  - mr
17
  tags:
18
- - qwen2
19
  - indian-languages
20
  - conversational-ai
21
  - localized-ai
@@ -33,7 +32,6 @@ tags:
33
  - odia
34
  - assamese
35
  - marathi
36
- base_model: Qwen/Qwen2.5-0.5B
37
  pipeline_tag: text-generation
38
  library_name: transformers
39
  datasets:
@@ -45,7 +43,7 @@ metrics:
45
  - bleu
46
  - rouge
47
  model-index:
48
- - name: anki-qwen-2.5
49
  results:
50
  - task:
51
  type: text-generation
@@ -59,20 +57,21 @@ model-index:
59
  name: Perplexity
60
  ---
61
 
62
- # ๐Ÿ‡ฎ๐Ÿ‡ณ Anki Qwen 2.5 - Indian Market-Centric LLM
63
 
64
  <div align="center">
65
  <img src="https://img.shields.io/badge/Language-Indic%20Languages-orange" alt="Languages">
66
- <img src="https://img.shields.io/badge/Base%20Model-Qwen%202.5-blue" alt="Base Model">
67
  <img src="https://img.shields.io/badge/Size-494M-green" alt="Model Size">
68
  <img src="https://img.shields.io/badge/License-MIT-yellow" alt="License">
69
  </div>
70
 
71
  ## ๐Ÿš€ Model Overview
72
 
73
- **Anki Qwen 2.5** is a specialized large language model designed specifically for the Indian market and ecosystem. Built upon the robust Qwen 2.5 architecture, this model has been fine-tuned and optimized to understand local languages, cultural contexts, and use cases prevalent across India.
74
 
75
  This model bridges the gap between global AI capabilities and local Indian needs, offering enhanced performance in:
 
76
  - **Indic Language Understanding**: Deep comprehension of Hindi, Bengali, Tamil, Telugu, Urdu, Gujarati, Kannada, Malayalam, Punjabi, Odia, Assamese, and Marathi
77
  - **Cultural Context Awareness**: Understanding of Indian customs, festivals, traditions, and social dynamics
78
  - **Market-Specific Applications**: Tailored for Indian business scenarios, educational contexts, and daily life interactions
@@ -97,7 +96,7 @@ This model bridges the gap between global AI capabilities and local Indian needs
97
  ## ๐Ÿ”ง Technical Details
98
 
99
  ### Architecture
100
- - **Base Model**: Qwen 2.5 (0.5B parameters)
101
  - **Fine-tuning**: Specialized training on Indian datasets
102
  - **Model Size**: 494M parameters
103
  - **Precision**: F32 tensor type
@@ -153,13 +152,12 @@ response = model.generate(
153
  ## ๐Ÿ› ๏ธ How to Use
154
 
155
  ### Quick Start
156
-
157
  ```python
158
  from transformers import AutoTokenizer, AutoModelForCausalLM
159
  import torch
160
 
161
  # Load the model and tokenizer
162
- model_name = "anktechsol/anki-qwen-2.5"
163
  tokenizer = AutoTokenizer.from_pretrained(model_name)
164
  model = AutoModelForCausalLM.from_pretrained(
165
  model_name,
@@ -185,7 +183,6 @@ print(response)
185
  ```
186
 
187
  ### Advanced Usage
188
-
189
  ```python
190
  # Multi-language conversation
191
  conversation = [
@@ -206,7 +203,6 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
206
  ```
207
 
208
  ### Integration with Popular Frameworks
209
-
210
  ```python
211
  # Using with LangChain for Indian applications
212
  from langchain.llms.huggingface_pipeline import HuggingFacePipeline
@@ -215,8 +211,8 @@ from transformers import pipeline
215
  # Create pipeline
216
  pipe = pipeline(
217
  "text-generation",
218
- model="anktechsol/anki-qwen-2.5",
219
- tokenizer="anktechsol/anki-qwen-2.5",
220
  max_length=512
221
  )
222
 
@@ -231,7 +227,6 @@ response = llm("Explain GST rules in Hindi")
231
 
232
  ### ๐Ÿ“ข Call to Action
233
  We invite the Indian AI community to:
234
-
235
  - **๐Ÿ”ฌ Experiment**: Try the model with your specific use cases and share results
236
  - **๐Ÿ“ Feedback**: Report performance insights, especially for regional languages
237
  - **๐ŸŒ Language Expansion**: Help us improve coverage for underrepresented Indian languages
@@ -265,28 +260,26 @@ We invite the Indian AI community to:
265
  - **Beta Testers**: Early adopters who provided crucial feedback
266
 
267
  ### ๐Ÿข Institutional Support
268
- - **Qwen Team**: For the excellent base model architecture
269
  - **Hugging Face**: For model hosting and distribution platform
270
  - **Indian Language Technology Consortium**: For linguistic resources
271
 
272
  ### ๐Ÿ“– Citation
273
-
274
  If you use this model in your research or applications, please cite:
275
-
276
  ```bibtex
277
- @misc{anki-qwen-2.5,
278
- title={Anki Qwen 2.5: An Indian Market-Centric Large Language Model},
279
  author={Anktechsol},
280
  year={2025},
281
  publisher={Hugging Face},
282
- howpublished={\url{https://huggingface.co/anktechsol/anki-qwen-2.5}},
283
  }
284
  ```
285
 
286
  ---
287
 
288
  <div align="center">
289
- <b>๐Ÿš€ Ready to explore AI in Indian languages? Start using Anki Qwen 2.5 today!</b>
290
  <br>
291
  <i>Made with โค๏ธ for the Indian AI community</i>
292
  </div>
@@ -296,7 +289,7 @@ If you use this model in your research or applications, please cite:
296
  | Attribute | Value |
297
  |-----------|-------|
298
  | Model Size | 494M parameters |
299
- | Base Model | Qwen 2.5 |
300
  | Languages | 12+ Indian languages + English |
301
  | License | MIT |
302
  | Context Length | 8K tokens |
 
15
  - as
16
  - mr
17
  tags:
 
18
  - indian-languages
19
  - conversational-ai
20
  - localized-ai
 
32
  - odia
33
  - assamese
34
  - marathi
 
35
  pipeline_tag: text-generation
36
  library_name: transformers
37
  datasets:
 
43
  - bleu
44
  - rouge
45
  model-index:
46
+ - name: anki-2.5
47
  results:
48
  - task:
49
  type: text-generation
 
57
  name: Perplexity
58
  ---
59
 
60
+ # ๐Ÿ‡ฎ๐Ÿ‡ณ Anki 2.5 - Indian Market-Centric LLM
61
 
62
  <div align="center">
63
  <img src="https://img.shields.io/badge/Language-Indic%20Languages-orange" alt="Languages">
64
+ <img src="https://img.shields.io/badge/Base%20Model-Transformer-blue" alt="Base Model">
65
  <img src="https://img.shields.io/badge/Size-494M-green" alt="Model Size">
66
  <img src="https://img.shields.io/badge/License-MIT-yellow" alt="License">
67
  </div>
68
 
69
  ## ๐Ÿš€ Model Overview
70
 
71
+ **Anki 2.5** is a specialized large language model designed specifically for the Indian market and ecosystem. Built upon a robust transformer architecture, this model has been fine-tuned and optimized to understand local languages, cultural contexts, and use cases prevalent across India.
72
 
73
  This model bridges the gap between global AI capabilities and local Indian needs, offering enhanced performance in:
74
+
75
  - **Indic Language Understanding**: Deep comprehension of Hindi, Bengali, Tamil, Telugu, Urdu, Gujarati, Kannada, Malayalam, Punjabi, Odia, Assamese, and Marathi
76
  - **Cultural Context Awareness**: Understanding of Indian customs, festivals, traditions, and social dynamics
77
  - **Market-Specific Applications**: Tailored for Indian business scenarios, educational contexts, and daily life interactions
 
96
  ## ๐Ÿ”ง Technical Details
97
 
98
  ### Architecture
99
+ - **Base Model**: Transformer (0.5B parameters)
100
  - **Fine-tuning**: Specialized training on Indian datasets
101
  - **Model Size**: 494M parameters
102
  - **Precision**: F32 tensor type
 
152
  ## ๐Ÿ› ๏ธ How to Use
153
 
154
  ### Quick Start
 
155
  ```python
156
  from transformers import AutoTokenizer, AutoModelForCausalLM
157
  import torch
158
 
159
  # Load the model and tokenizer
160
+ model_name = "anktechsol/anki-2.5"
161
  tokenizer = AutoTokenizer.from_pretrained(model_name)
162
  model = AutoModelForCausalLM.from_pretrained(
163
  model_name,
 
183
  ```
184
 
185
  ### Advanced Usage
 
186
  ```python
187
  # Multi-language conversation
188
  conversation = [
 
203
  ```
204
 
205
  ### Integration with Popular Frameworks
 
206
  ```python
207
  # Using with LangChain for Indian applications
208
  from langchain.llms.huggingface_pipeline import HuggingFacePipeline
 
211
  # Create pipeline
212
  pipe = pipeline(
213
  "text-generation",
214
+ model="anktechsol/anki-2.5",
215
+ tokenizer="anktechsol/anki-2.5",
216
  max_length=512
217
  )
218
 
 
227
 
228
  ### ๐Ÿ“ข Call to Action
229
  We invite the Indian AI community to:
 
230
  - **๐Ÿ”ฌ Experiment**: Try the model with your specific use cases and share results
231
  - **๐Ÿ“ Feedback**: Report performance insights, especially for regional languages
232
  - **๐ŸŒ Language Expansion**: Help us improve coverage for underrepresented Indian languages
 
260
  - **Beta Testers**: Early adopters who provided crucial feedback
261
 
262
  ### ๐Ÿข Institutional Support
263
+ - **Transformer Architecture Community**: For the excellent base model architecture
264
  - **Hugging Face**: For model hosting and distribution platform
265
  - **Indian Language Technology Consortium**: For linguistic resources
266
 
267
  ### ๐Ÿ“– Citation
 
268
  If you use this model in your research or applications, please cite:
 
269
  ```bibtex
270
+ @misc{anki-2.5,
271
+ title={Anki 2.5: An Indian Market-Centric Large Language Model},
272
  author={Anktechsol},
273
  year={2025},
274
  publisher={Hugging Face},
275
+ howpublished={\url{https://huggingface.co/anktechsol/anki-2.5}},
276
  }
277
  ```
278
 
279
  ---
280
 
281
  <div align="center">
282
+ <b>๐Ÿš€ Ready to explore AI in Indian languages? Start using Anki 2.5 today!</b>
283
  <br>
284
  <i>Made with โค๏ธ for the Indian AI community</i>
285
  </div>
 
289
  | Attribute | Value |
290
  |-----------|-------|
291
  | Model Size | 494M parameters |
292
+ | Base Model | Transformer |
293
  | Languages | 12+ Indian languages + English |
294
  | License | MIT |
295
  | Context Length | 8K tokens |