File size: 7,080 Bytes
1ecef56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bbe65
 
4399f49
e9257ca
1ecef56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860c0fe
1ecef56
 
 
 
 
c568b54
1ecef56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e78a98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
inference: false
base_model:
- mistralai/Devstral-Small-2507
- unsloth/Devstral-Small-2507
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
---
# Quantization NVFP4A16
Quantified from https://huggingface.co/unsloth/Devstral-Small-2507 (due to in-folder tokenizer).
Compressed with [llm-compressor](https://github.com/vllm-project/llm-compressor).

We recommend cuda capabilities 12.0 hardware (NVIDIA Blackwell: RTX 5000 series GPU, DGX Spark, B200, ...) due to native FP4 acceleration.

# Devstral Small 1.1

Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) ๐Ÿ™Œ. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). 

It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed.

For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community.

Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral-2507).

**Updates compared to [`Devstral Small 1.0`](https://huggingface.co/mistralai/Devstral-Small-2505):**
- Improved performance, please refer to the [benchmark results](#benchmark-results).
- `Devstral Small 1.1` is still great when paired with OpenHands. This new version also generalizes better to other prompts and coding environments. 
- Supports [Mistral's function calling format](https://mistralai.github.io/mistral-common/usage/tools/).


## Key Features:
- **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents.
- **lightweight**: with its compact size due to quantization, Devstral NVFP4A16 is light enough to run on a single RTX 5060ti 16GB, making it an appropriate model for local deployment and on-device use.
- **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes.
- **Context Window**: A 128k context window.
- **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size.


## Benchmark Results (base model / no quant)

### SWE-Bench

Devstral Small 1.1 achieves a score of **53.6%** on SWE-Bench Verified, outperforming Devstral Small 1.0 by +6,8% and the second best state of the art model by +11.4%.

| Model              | Agentic Scaffold   | SWE-Bench Verified (%) |
|--------------------|--------------------|------------------------|
| Devstral Small 1.1 | OpenHands Scaffold | **53.6**               |
| Devstral Small 1.0 | OpenHands Scaffold | *46.8*                 |
| GPT-4.1-mini       | OpenAI Scaffold    | 23.6                   |
| Claude 3.5 Haiku   | Anthropic Scaffold | 40.6                   |
| SWE-smith-LM 32B   | SWE-agent Scaffold | 40.2                   |
| Skywork SWE        | OpenHands Scaffold | 38.0                   |
| DeepSWE            | R2E-Gym   Scaffold | 42.2                   |


 When evaluated under the same test scaffold (OpenHands, provided by All Hands AI ๐Ÿ™Œ), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B.

## Local inference Usage 

We recommend to use Devstral NVFP4A16 with the [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1
Other methods are untested

#### vLLM (recommended, other methods untested)

<details>
<summary>Expand</summary

We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.

**_Installation_**
Make sure you install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1):

```
pip install vllm --extra-index-url https://download.pytorch.org/whl/cu128
```

Also make sure to have installed [`mistral_common >= 1.7.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.7.0).

```
pip install mistral-common --upgrade
```

To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```

You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).

**_Launch server_**

We recommand that you use Devstral in a server/client setting. 

1. Spin up a server:

```
vllm serve apolloparty/Devstral-Small-2507-NVFP4A16 --tool-call-parser mistral --enable-auto-tool-choice
```


2. To ping the client you can use a simple Python snippet.

```py
import requests
import json
from huggingface_hub import hf_hub_download


url = "http://<your-server-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}

model = "apolloparty/Devstral-Small-2507-NVFP4A16"

def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt

SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "<your-command>",
            },
        ],
    },
]

data = {"model": model, "messages": messages, "temperature": 0.15}

# Devstral Small 1.1 supports tool calling. If you want to use tools, follow this:
# tools = [ # Define tools for vLLM
#     {
#         "type": "function",
#         "function": {
#             "name": "git_clone",
#             "description": "Clone a git repository",
#             "parameters": {
#                 "type": "object",
#                 "properties": {
#                     "url": {
#                         "type": "string",
#                         "description": "The url of the git repository",
#                     },
#                 },
#                 "required": ["url"],
#             },
#         },
#     }
# ] 
# data = {"model": model, "messages": messages, "temperature": 0.15, "tools": tools} # Pass tools to payload.

response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])
```
</details>