Text Generation
Transformers
Safetensors
arcee
bartowski commited on
Commit
ff74f61
·
verified ·
1 Parent(s): ab9a8da

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - es
6
+ - fr
7
+ - de
8
+ - it
9
+ - pt
10
+ - ru
11
+ - ar
12
+ - hi
13
+ - ko
14
+ - zh
15
+ library_name: transformers
16
+ extra_gated_prompt: Company name is optional, please put NA if you would prefer not to share it.
17
+ ---
18
+
19
+ <div align="center">
20
+ <picture>
21
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/Lj9YVLIKKdImV_jID0A1g.png" width="25%" alt="Arcee AFM 4.5B">
22
+ </picture>
23
+ </div>
24
+
25
+ # AFM-4.5B-Base-Pre-Anneal
26
+
27
+ **AFM-4.5B-Base-Pre-Anneal** is a 4.5 billion parameter instruction-tuned model developed by Arcee.ai, designed for enterprise-grade performance across diverse deployment environments from cloud to edge. The base model was trained on a dataset of 6.5 trillion tokens of general pretraining data. We use a modified version of [TorchTitan](https://arxiv.org/abs/2410.06511) for pretraining.
28
+
29
+ The development of AFM-4.5B prioritized data quality as a fundamental requirement for achieving robust model performance. We collaborated with DatologyAI, a company specializing in large-scale data curation. DatologyAI's curation pipeline integrates a suite of proprietary algorithms—model-based quality filtering, embedding-based curation, target distribution-matching, source mixing, and synthetic data. Their expertise enabled the creation of a curated dataset tailored to support strong real-world performance.
30
+
31
+ The model architecture follows a standard transformer decoder-only design based on Vaswani et al., incorporating several key modifications for enhanced performance and efficiency. Notable architectural features include grouped query attention for improved inference efficiency and ReLU^2 activation functions instead of SwiGLU to enable sparsification while maintaining or exceeding performance benchmarks.
32
+
33
+ The model available in this repo is the base model before it was annealed with math and code and before merging and context extension.
34
+
35
+ ***
36
+
37
+ <div align="center">
38
+ <picture>
39
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/sSVjGNHfrJKmQ6w8I18ek.png" style="background-color:ghostwhite;padding:5px;" width="17%" alt="Powered by Datology">
40
+ </picture>
41
+ </div>
42
+
43
+ ## Model Details
44
+
45
+ * **Model Architecture:** ArceeForCausalLM
46
+ * **Parameters:** 4.5B
47
+ * **Training Tokens:** 6.5T - this model is pre-annealing with math and code and uses only the general dataset.
48
+ * **License:** [Apache-2.0](https://huggingface.co/arcee-ai/AFM-4.5B-Base#license)
49
+
50
+ ***
51
+
52
+ ## Benchmarks
53
+
54
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/rxUKBWNf2piJwdKhKC3tZ.png)
55
+
56
+ ## How to use with `transformers`
57
+
58
+ You can use the model directly with the `transformers` library.
59
+
60
+ ```python
61
+ from transformers import AutoTokenizer, AutoModelForCausalLM
62
+ import torch
63
+
64
+ model_id = "arcee-ai/AFM-4.5B-Base-Pre-Anneal"
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_id,
68
+ torch_dtype=torch.bfloat16,
69
+ device_map="auto"
70
+ )
71
+
72
+ prompt = "Once upon a time "
73
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
74
+
75
+ # Generate text
76
+ outputs = model.generate(
77
+ input_ids,
78
+ max_new_tokens=100,
79
+ do_sample=True,
80
+ temperature=0.7,
81
+ top_p=0.95
82
+ )
83
+
84
+ generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
85
+ print(generated_text)
86
+ ```
87
+
88
+ ## License
89
+
90
+ AFM-4.5B is released under the Apache-2.0 license.