berkind commited on
Commit
87ad05d
·
verified ·
1 Parent(s): 4c19b2d

Upload canary-1b-v2

Browse files
canary-1b-v2/AudioEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea2bb79ff3927283c2cd29756ff5c9dc53036e6038ef53e22d93494e80f7df2f
3
+ size 243
canary-1b-v2/AudioEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef5ed889fcb32e62f1c0d8c172fff4161bcb429d449a46834f3c7a2376d2d7be
3
+ size 374
canary-1b-v2/AudioEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Mixed (Float16, Palettized (6 bits), Sparse)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 16385 × 1 × 188)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 16385, 1, 188]",
13
+ "name" : "ctc_head_raw_output",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 8,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Pad" : 24,
23
+ "Ios17.mul" : 121,
24
+ "Split" : 24,
25
+ "Ios17.transpose" : 1,
26
+ "Ios17.sub" : 1,
27
+ "Ios16.constexprLutToDense" : 266,
28
+ "Ios17.conv" : 560,
29
+ "Ios17.matmul" : 72,
30
+ "Ios16.sigmoid" : 24,
31
+ "Ios17.add" : 433,
32
+ "Ios17.sliceByIndex" : 48,
33
+ "Ios16.constexprSparseToDense" : 265,
34
+ "Ios16.relu" : 3,
35
+ "Ios17.batchNorm" : 120,
36
+ "Ios16.softmax" : 24,
37
+ "Ios17.reshape" : 193,
38
+ "Ios17.layerNorm" : 120,
39
+ "Ios16.silu" : 72
40
+ },
41
+ "computePrecision" : "Mixed (Float16, Int32)",
42
+ "isUpdatable" : "0",
43
+ "stateSchema" : [
44
+
45
+ ],
46
+ "availability" : {
47
+ "macOS" : "14.0",
48
+ "tvOS" : "17.0",
49
+ "visionOS" : "1.0",
50
+ "watchOS" : "10.0",
51
+ "iOS" : "17.0",
52
+ "macCatalyst" : "17.0"
53
+ },
54
+ "modelType" : {
55
+ "name" : "MLModelType_mlProgram"
56
+ },
57
+ "userDefinedMetadata" : {
58
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
59
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
60
+ "com.github.apple.coremltools.version" : "8.3.0"
61
+ },
62
+ "inputSchema" : [
63
+ {
64
+ "hasShapeFlexibility" : "0",
65
+ "isOptional" : "0",
66
+ "dataType" : "Float16",
67
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
68
+ "shortDescription" : "",
69
+ "shape" : "[1, 1, 1501, 128]",
70
+ "name" : "melspectrogram_features",
71
+ "type" : "MultiArray"
72
+ },
73
+ {
74
+ "hasShapeFlexibility" : "0",
75
+ "isOptional" : "0",
76
+ "dataType" : "Float16",
77
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1 × 1)",
78
+ "shortDescription" : "",
79
+ "shape" : "[1, 1, 1, 1]",
80
+ "name" : "input_1",
81
+ "type" : "MultiArray"
82
+ }
83
+ ],
84
+ "generatedClassName" : "AudioEncoder_mixedBitPalettized_6_bit_6_bit",
85
+ "method" : "predict"
86
+ }
87
+ ]
canary-1b-v2/AudioEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/AudioEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:804ea36c2fdf98a99af26e1314e20f7d5b3b1835409bbbde539d441e04d9b0d6
3
+ size 569490114
canary-1b-v2/MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a67d3ece5958dea8f020020a16d72c2d6763103e5a671a2641444167b1c38d
3
+ size 243
canary-1b-v2/MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:319a6328b0dd0cade7f4249ed7bb68b50aa5ffde93e968fb796cf0f5ad735c9c
3
+ size 331
canary-1b-v2/MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float32",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 1501, 128]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 8,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Identity" : 1,
23
+ "Ios17.mul" : 2,
24
+ "Ios17.sqrt" : 1,
25
+ "Ios17.square" : 3,
26
+ "Ios17.transpose" : 1,
27
+ "Ios17.sub" : 2,
28
+ "Ios17.matmul" : 1,
29
+ "Ios17.conv" : 2,
30
+ "Ios17.log" : 1,
31
+ "Ios17.sliceByIndex" : 2,
32
+ "Ios17.add" : 3,
33
+ "Ios16.reduceMean" : 2,
34
+ "Ios17.realDiv" : 1,
35
+ "Ios17.expandDims" : 4,
36
+ "Ios17.squeeze" : 2,
37
+ "Ios17.reshape" : 2,
38
+ "Ios17.cast" : 2,
39
+ "Pad" : 2
40
+ },
41
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
42
+ "isUpdatable" : "0",
43
+ "stateSchema" : [
44
+
45
+ ],
46
+ "availability" : {
47
+ "macOS" : "14.0",
48
+ "tvOS" : "17.0",
49
+ "visionOS" : "1.0",
50
+ "watchOS" : "10.0",
51
+ "iOS" : "17.0",
52
+ "macCatalyst" : "17.0"
53
+ },
54
+ "modelType" : {
55
+ "name" : "MLModelType_mlProgram"
56
+ },
57
+ "userDefinedMetadata" : {
58
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
59
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
60
+ "com.github.apple.coremltools.version" : "8.3.0"
61
+ },
62
+ "inputSchema" : [
63
+ {
64
+ "hasShapeFlexibility" : "0",
65
+ "isOptional" : "0",
66
+ "dataType" : "Float16",
67
+ "formattedType" : "MultiArray (Float16 240000)",
68
+ "shortDescription" : "",
69
+ "shape" : "[240000]",
70
+ "name" : "audio",
71
+ "type" : "MultiArray"
72
+ }
73
+ ],
74
+ "generatedClassName" : "MelSpectrogram",
75
+ "method" : "predict"
76
+ }
77
+ ]
canary-1b-v2/MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3404.16.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios17>(tensor<fp16, [240000]> audio) {
5
+ tensor<string, []> cast_0_dtype_0 = const()[name = tensor<string, []>("cast_0_dtype_0"), val = tensor<string, []>("fp32")];
6
+ tensor<fp32, [128, 257]> mel_filters = const()[name = tensor<string, []>("mel_filters"), val = tensor<fp32, [128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
7
+ tensor<int32, [1]> var_8_begin_0 = const()[name = tensor<string, []>("op_8_begin_0"), val = tensor<int32, [1]>([1])];
8
+ tensor<int32, [1]> var_8_end_0 = const()[name = tensor<string, []>("op_8_end_0"), val = tensor<int32, [1]>([240000])];
9
+ tensor<bool, [1]> var_8_end_mask_0 = const()[name = tensor<string, []>("op_8_end_mask_0"), val = tensor<bool, [1]>([true])];
10
+ tensor<fp32, [240000]> cast_0 = cast(dtype = cast_0_dtype_0, x = audio)[name = tensor<string, []>("cast_9")];
11
+ tensor<fp32, [239999]> var_8 = slice_by_index(begin = var_8_begin_0, end = var_8_end_0, end_mask = var_8_end_mask_0, x = cast_0)[name = tensor<string, []>("op_8")];
12
+ tensor<int32, [1]> var_13_begin_0 = const()[name = tensor<string, []>("op_13_begin_0"), val = tensor<int32, [1]>([0])];
13
+ tensor<int32, [1]> var_13_end_0 = const()[name = tensor<string, []>("op_13_end_0"), val = tensor<int32, [1]>([239999])];
14
+ tensor<bool, [1]> var_13_end_mask_0 = const()[name = tensor<string, []>("op_13_end_mask_0"), val = tensor<bool, [1]>([false])];
15
+ tensor<fp32, [239999]> var_13 = slice_by_index(begin = var_13_begin_0, end = var_13_end_0, end_mask = var_13_end_mask_0, x = cast_0)[name = tensor<string, []>("op_13")];
16
+ tensor<fp32, []> var_14 = const()[name = tensor<string, []>("op_14"), val = tensor<fp32, []>(0x1.f0a3d8p-1)];
17
+ tensor<fp32, [239999]> var_15 = mul(x = var_13, y = var_14)[name = tensor<string, []>("op_15")];
18
+ tensor<fp32, [239999]> input_1 = sub(x = var_8, y = var_15)[name = tensor<string, []>("input_1")];
19
+ tensor<fp32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<fp32, []>(0x0p+0)];
20
+ tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 0])];
21
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("constant")];
22
+ tensor<fp32, [240000]> input_3 = pad(constant_val = const_0, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1)[name = tensor<string, []>("input_3")];
23
+ tensor<int32, [3]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [3]>([1, 1, 240000])];
24
+ tensor<fp32, [1, 1, 240000]> input_5 = reshape(shape = var_30, x = input_3)[name = tensor<string, []>("input_5")];
25
+ tensor<fp32, []> const_2 = const()[name = tensor<string, []>("const_2"), val = tensor<fp32, []>(0x0p+0)];
26
+ tensor<int32, [6]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
27
+ tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("reflect")];
28
+ tensor<fp32, [1, 1, 240512]> input_7 = pad(constant_val = const_2, mode = input_7_mode_0, pad = input_7_pad_0, x = input_5)[name = tensor<string, []>("input_7")];
29
+ tensor<int32, [1]> var_42 = const()[name = tensor<string, []>("op_42"), val = tensor<int32, [1]>([240512])];
30
+ tensor<fp32, [240512]> input = reshape(shape = var_42, x = input_7)[name = tensor<string, []>("input")];
31
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
32
+ tensor<fp32, [1, 240512]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x = input)[name = tensor<string, []>("expand_dims_0")];
33
+ tensor<fp32, [257, 1, 512]> expand_dims_1 = const()[name = tensor<string, []>("expand_dims_1"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(131712)))];
34
+ tensor<fp32, [257, 1, 512]> expand_dims_2 = const()[name = tensor<string, []>("expand_dims_2"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(658112)))];
35
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
36
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
37
+ tensor<fp32, [1, 1, 240512]> expand_dims_4 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0)[name = tensor<string, []>("expand_dims_4")];
38
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
39
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
40
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
41
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
42
+ tensor<fp32, [1, 257, 1501]> conv_0 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1, x = expand_dims_4)[name = tensor<string, []>("conv_0")];
43
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
44
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
45
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
46
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
47
+ tensor<fp32, [1, 257, 1501]> conv_1 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2, x = expand_dims_4)[name = tensor<string, []>("conv_1")];
48
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
49
+ tensor<fp32, [257, 1501]> squeeze_0 = squeeze(axes = squeeze_0_axes_0, x = conv_0)[name = tensor<string, []>("squeeze_0")];
50
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
51
+ tensor<fp32, [257, 1501]> squeeze_1 = squeeze(axes = squeeze_1_axes_0, x = conv_1)[name = tensor<string, []>("squeeze_1")];
52
+ tensor<fp32, [257, 1501]> square_1 = square(x = squeeze_0)[name = tensor<string, []>("square_1")];
53
+ tensor<fp32, [257, 1501]> square_2 = square(x = squeeze_1)[name = tensor<string, []>("square_2")];
54
+ tensor<fp32, [257, 1501]> add_1 = add(x = square_1, y = square_2)[name = tensor<string, []>("add_1")];
55
+ tensor<fp32, [257, 1501]> magnitudes = identity(x = add_1)[name = tensor<string, []>("magnitudes")];
56
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
57
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
58
+ tensor<fp32, [128, 1501]> mel_spec_1 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters, y = magnitudes)[name = tensor<string, []>("mel_spec_1")];
59
+ tensor<fp32, []> var_56 = const()[name = tensor<string, []>("op_56"), val = tensor<fp32, []>(0x1p-24)];
60
+ tensor<fp32, [128, 1501]> mel_spec_3 = add(x = mel_spec_1, y = var_56)[name = tensor<string, []>("mel_spec_3")];
61
+ tensor<fp32, []> mel_spec_5_epsilon_0 = const()[name = tensor<string, []>("mel_spec_5_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
62
+ tensor<fp32, [128, 1501]> mel_spec_5 = log(epsilon = mel_spec_5_epsilon_0, x = mel_spec_3)[name = tensor<string, []>("mel_spec_5")];
63
+ tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
64
+ tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
65
+ tensor<fp32, [128, 1]> per_feature_mean = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_5)[name = tensor<string, []>("per_feature_mean")];
66
+ tensor<fp32, [128, 1501]> sub_0 = sub(x = mel_spec_5, y = per_feature_mean)[name = tensor<string, []>("sub_0")];
67
+ tensor<fp32, [128, 1501]> square_0 = square(x = sub_0)[name = tensor<string, []>("square_0")];
68
+ tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
69
+ tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
70
+ tensor<fp32, [128, 1]> reduce_mean_1 = reduce_mean(axes = reduce_mean_1_axes_0, keep_dims = reduce_mean_1_keep_dims_0, x = square_0)[name = tensor<string, []>("reduce_mean_1")];
71
+ tensor<fp32, []> real_div_0 = const()[name = tensor<string, []>("real_div_0"), val = tensor<fp32, []>(0x1.002bbp+0)];
72
+ tensor<fp32, [128, 1]> mul_0 = mul(x = reduce_mean_1, y = real_div_0)[name = tensor<string, []>("mul_0")];
73
+ tensor<fp32, [128, 1]> sqrt_0 = sqrt(x = mul_0)[name = tensor<string, []>("sqrt_0")];
74
+ tensor<fp32, []> var_70 = const()[name = tensor<string, []>("op_70"), val = tensor<fp32, []>(0x1.4f8b58p-17)];
75
+ tensor<fp32, [128, 1]> per_feature_std = add(x = sqrt_0, y = var_70)[name = tensor<string, []>("per_feature_std")];
76
+ tensor<fp32, [128, 1501]> mel_spec = real_div(x = sub_0, y = per_feature_std)[name = tensor<string, []>("mel_spec")];
77
+ tensor<int32, [2]> var_75_perm_0 = const()[name = tensor<string, []>("op_75_perm_0"), val = tensor<int32, [2]>([1, 0])];
78
+ tensor<int32, [1]> var_77_axes_0 = const()[name = tensor<string, []>("op_77_axes_0"), val = tensor<int32, [1]>([0])];
79
+ tensor<fp32, [1501, 128]> var_75 = transpose(perm = var_75_perm_0, x = mel_spec)[name = tensor<string, []>("transpose_0")];
80
+ tensor<fp32, [1, 1501, 128]> var_77 = expand_dims(axes = var_77_axes_0, x = var_75)[name = tensor<string, []>("op_77")];
81
+ tensor<int32, [1]> var_79_axes_0 = const()[name = tensor<string, []>("op_79_axes_0"), val = tensor<int32, [1]>([1])];
82
+ tensor<fp32, [1, 1, 1501, 128]> var_79 = expand_dims(axes = var_79_axes_0, x = var_77)[name = tensor<string, []>("op_79")];
83
+ tensor<string, []> cast_7_dtype_0 = const()[name = tensor<string, []>("cast_7_dtype_0"), val = tensor<string, []>("fp16")];
84
+ tensor<fp16, [1, 1, 1501, 128]> melspectrogram_features = cast(dtype = cast_7_dtype_0, x = var_79)[name = tensor<string, []>("cast_8")];
85
+ } -> (melspectrogram_features);
86
+ }
canary-1b-v2/MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1570ad9beb3077cf61314606d8e4c30fc1d7b971e3bb73ee9444467faa9dd671
3
+ size 1184512
canary-1b-v2/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ParakeetForCTC"
4
+ ],
5
+ "ctc_loss_reduction": "mean",
6
+ "ctc_zero_infinity": true,
7
+ "dtype": "float32",
8
+ "encoder_config": {
9
+ "activation_dropout": 0.1,
10
+ "attention_bias": true,
11
+ "attention_dropout": 0.1,
12
+ "conv_kernel_size": 9,
13
+ "dropout": 0.1,
14
+ "dropout_positions": 0.0,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 1024,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 4096,
19
+ "layerdrop": 0.1,
20
+ "max_position_embeddings": 5000,
21
+ "model_type": "parakeet_encoder",
22
+ "num_attention_heads": 8,
23
+ "num_hidden_layers": 24,
24
+ "num_key_value_heads": 8,
25
+ "num_mel_bins": 128,
26
+ "scale_input": false,
27
+ "subsampling_conv_channels": 256,
28
+ "subsampling_conv_kernel_size": 3,
29
+ "subsampling_conv_stride": 2,
30
+ "subsampling_factor": 8
31
+ },
32
+ "initializer_range": 0.02,
33
+ "model_type": "parakeet_ctc",
34
+ "pad_token_id": 1024,
35
+ "transformers_version": "4.57.1",
36
+ "vocab_size": 16385
37
+ }
canary-1b-v2/preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "feature_extractor_type": "ParakeetFeatureExtractor",
3
+ "feature_size": 128,
4
+ "hop_length": 160,
5
+ "n_fft": 512,
6
+ "padding_side": "right",
7
+ "padding_value": 0.0,
8
+ "preemphasis": 0.97,
9
+ "processor_class": "ParakeetProcessor",
10
+ "return_attention_mask": true,
11
+ "sampling_rate": 16000,
12
+ "win_length": 400
13
+ }
canary-1b-v2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/vocab.json ADDED
The diff for this file is too large to render. See raw diff