Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +363 -0
- config.json +53 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +61 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:130899
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: chandar-lab/NeoBERT
|
10 |
+
widget:
|
11 |
+
- source_sentence: Also, Lou Reed is tough.
|
12 |
+
sentences:
|
13 |
+
- Lou Reed is tough.
|
14 |
+
- The snow was so deep in the field that if you fell, you wouldn't feel it.
|
15 |
+
- Some organizations don't like change.
|
16 |
+
- source_sentence: Justice, said the scout.
|
17 |
+
sentences:
|
18 |
+
- 'At any moment, there are over 100 people guarding the president. '
|
19 |
+
- Our three kids did a lot of camping with us.
|
20 |
+
- The scout called for justice.
|
21 |
+
- source_sentence: More importantly, I looked accurate.
|
22 |
+
sentences:
|
23 |
+
- 'Kal was not the only one whose eyes went out of focus. '
|
24 |
+
- The Commission interpreted it.
|
25 |
+
- I looked right.
|
26 |
+
- source_sentence: no no they're not real hard
|
27 |
+
sentences:
|
28 |
+
- I waited eight seconds.
|
29 |
+
- G.M. has demonstrated it is capable of producing a first-class commercial with
|
30 |
+
it's Saturn line.
|
31 |
+
- Hard isn't a word I would use to describe them.
|
32 |
+
- source_sentence: but there the majority really haven't done anything with their
|
33 |
+
yards this neighborhood is is four years old
|
34 |
+
sentences:
|
35 |
+
- Perret inhabited Saint-Pierre during the 1930s
|
36 |
+
- Most of them haven't done anything, this neighborhood is four years old.
|
37 |
+
- Clinton stood to the side and was not in the middle of the attacks.
|
38 |
+
pipeline_tag: sentence-similarity
|
39 |
+
library_name: sentence-transformers
|
40 |
+
---
|
41 |
+
|
42 |
+
# SentenceTransformer based on chandar-lab/NeoBERT
|
43 |
+
|
44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [chandar-lab/NeoBERT](https://huggingface.co/chandar-lab/NeoBERT). It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
### Model Description
|
49 |
+
- **Model Type:** Sentence Transformer
|
50 |
+
- **Base model:** [chandar-lab/NeoBERT](https://huggingface.co/chandar-lab/NeoBERT) <!-- at revision 2e41a1bd984aa78d10daa96e4745303541957410 -->
|
51 |
+
- **Maximum Sequence Length:** None tokens
|
52 |
+
- **Output Dimensionality:** 1536 dimensions
|
53 |
+
- **Similarity Function:** Cosine Similarity
|
54 |
+
<!-- - **Training Dataset:** Unknown -->
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
61 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
62 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
63 |
+
|
64 |
+
### Full Model Architecture
|
65 |
+
|
66 |
+
```
|
67 |
+
SentenceTransformer(
|
68 |
+
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: NeoBERT
|
69 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
70 |
+
)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Usage
|
74 |
+
|
75 |
+
### Direct Usage (Sentence Transformers)
|
76 |
+
|
77 |
+
First install the Sentence Transformers library:
|
78 |
+
|
79 |
+
```bash
|
80 |
+
pip install -U sentence-transformers
|
81 |
+
```
|
82 |
+
|
83 |
+
Then you can load this model and run inference.
|
84 |
+
```python
|
85 |
+
from sentence_transformers import SentenceTransformer
|
86 |
+
|
87 |
+
# Download from the 🤗 Hub
|
88 |
+
model = SentenceTransformer("ashercn97/neobert-multi-nli")
|
89 |
+
# Run inference
|
90 |
+
sentences = [
|
91 |
+
"but there the majority really haven't done anything with their yards this neighborhood is is four years old",
|
92 |
+
"Most of them haven't done anything, this neighborhood is four years old.",
|
93 |
+
'Perret inhabited Saint-Pierre during the 1930s',
|
94 |
+
]
|
95 |
+
embeddings = model.encode(sentences)
|
96 |
+
print(embeddings.shape)
|
97 |
+
# [3, 1536]
|
98 |
+
|
99 |
+
# Get the similarity scores for the embeddings
|
100 |
+
similarities = model.similarity(embeddings, embeddings)
|
101 |
+
print(similarities.shape)
|
102 |
+
# [3, 3]
|
103 |
+
```
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Direct Usage (Transformers)
|
107 |
+
|
108 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
109 |
+
|
110 |
+
</details>
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Downstream Usage (Sentence Transformers)
|
115 |
+
|
116 |
+
You can finetune this model on your own dataset.
|
117 |
+
|
118 |
+
<details><summary>Click to expand</summary>
|
119 |
+
|
120 |
+
</details>
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Dataset
|
144 |
+
|
145 |
+
#### Unnamed Dataset
|
146 |
+
|
147 |
+
* Size: 130,899 training samples
|
148 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
149 |
+
* Approximate statistics based on the first 1000 samples:
|
150 |
+
| | sentence_0 | sentence_1 |
|
151 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
152 |
+
| type | string | string |
|
153 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 26.92 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.43 tokens</li><li>max: 40 tokens</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| sentence_0 | sentence_1 |
|
156 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
157 |
+
| <code>I can tell you, Hastings, it's making life jolly difficult for us. </code> | <code>This is making life a lot harder for us. </code> |
|
158 |
+
| <code>The striking thing about workers' comments after the vote was how many of them mentioned the possibility of the company shutting down its operations.</code> | <code>The striking thing about workers' comments after the vote was how many of them mentioned the possibility of their company shutting down its operations.</code> |
|
159 |
+
| <code>Stephen Hargarten said that screening for alcohol applies not only to the potential for interventions, but also to the patient's overall quality of care, including safety from injury due to alcohol impairment or from alcohol withdrawal during the acute phase of treatment for medical or surgical conditions.</code> | <code>Stephen Hargarten said that screening for alcohol applies to patient's overall quality of care.</code> |
|
160 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"scale": 20.0,
|
164 |
+
"similarity_fct": "cos_sim"
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
### Training Hyperparameters
|
169 |
+
#### Non-Default Hyperparameters
|
170 |
+
|
171 |
+
- `per_device_train_batch_size`: 128
|
172 |
+
- `per_device_eval_batch_size`: 128
|
173 |
+
- `fp16`: True
|
174 |
+
- `multi_dataset_batch_sampler`: round_robin
|
175 |
+
|
176 |
+
#### All Hyperparameters
|
177 |
+
<details><summary>Click to expand</summary>
|
178 |
+
|
179 |
+
- `overwrite_output_dir`: False
|
180 |
+
- `do_predict`: False
|
181 |
+
- `eval_strategy`: no
|
182 |
+
- `prediction_loss_only`: True
|
183 |
+
- `per_device_train_batch_size`: 128
|
184 |
+
- `per_device_eval_batch_size`: 128
|
185 |
+
- `per_gpu_train_batch_size`: None
|
186 |
+
- `per_gpu_eval_batch_size`: None
|
187 |
+
- `gradient_accumulation_steps`: 1
|
188 |
+
- `eval_accumulation_steps`: None
|
189 |
+
- `torch_empty_cache_steps`: None
|
190 |
+
- `learning_rate`: 5e-05
|
191 |
+
- `weight_decay`: 0.0
|
192 |
+
- `adam_beta1`: 0.9
|
193 |
+
- `adam_beta2`: 0.999
|
194 |
+
- `adam_epsilon`: 1e-08
|
195 |
+
- `max_grad_norm`: 1
|
196 |
+
- `num_train_epochs`: 3
|
197 |
+
- `max_steps`: -1
|
198 |
+
- `lr_scheduler_type`: linear
|
199 |
+
- `lr_scheduler_kwargs`: {}
|
200 |
+
- `warmup_ratio`: 0.0
|
201 |
+
- `warmup_steps`: 0
|
202 |
+
- `log_level`: passive
|
203 |
+
- `log_level_replica`: warning
|
204 |
+
- `log_on_each_node`: True
|
205 |
+
- `logging_nan_inf_filter`: True
|
206 |
+
- `save_safetensors`: True
|
207 |
+
- `save_on_each_node`: False
|
208 |
+
- `save_only_model`: False
|
209 |
+
- `restore_callback_states_from_checkpoint`: False
|
210 |
+
- `no_cuda`: False
|
211 |
+
- `use_cpu`: False
|
212 |
+
- `use_mps_device`: False
|
213 |
+
- `seed`: 42
|
214 |
+
- `data_seed`: None
|
215 |
+
- `jit_mode_eval`: False
|
216 |
+
- `use_ipex`: False
|
217 |
+
- `bf16`: False
|
218 |
+
- `fp16`: True
|
219 |
+
- `fp16_opt_level`: O1
|
220 |
+
- `half_precision_backend`: auto
|
221 |
+
- `bf16_full_eval`: False
|
222 |
+
- `fp16_full_eval`: False
|
223 |
+
- `tf32`: None
|
224 |
+
- `local_rank`: 0
|
225 |
+
- `ddp_backend`: None
|
226 |
+
- `tpu_num_cores`: None
|
227 |
+
- `tpu_metrics_debug`: False
|
228 |
+
- `debug`: []
|
229 |
+
- `dataloader_drop_last`: False
|
230 |
+
- `dataloader_num_workers`: 0
|
231 |
+
- `dataloader_prefetch_factor`: None
|
232 |
+
- `past_index`: -1
|
233 |
+
- `disable_tqdm`: False
|
234 |
+
- `remove_unused_columns`: True
|
235 |
+
- `label_names`: None
|
236 |
+
- `load_best_model_at_end`: False
|
237 |
+
- `ignore_data_skip`: False
|
238 |
+
- `fsdp`: []
|
239 |
+
- `fsdp_min_num_params`: 0
|
240 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
241 |
+
- `tp_size`: 0
|
242 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
243 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
244 |
+
- `deepspeed`: None
|
245 |
+
- `label_smoothing_factor`: 0.0
|
246 |
+
- `optim`: adamw_torch
|
247 |
+
- `optim_args`: None
|
248 |
+
- `adafactor`: False
|
249 |
+
- `group_by_length`: False
|
250 |
+
- `length_column_name`: length
|
251 |
+
- `ddp_find_unused_parameters`: None
|
252 |
+
- `ddp_bucket_cap_mb`: None
|
253 |
+
- `ddp_broadcast_buffers`: False
|
254 |
+
- `dataloader_pin_memory`: True
|
255 |
+
- `dataloader_persistent_workers`: False
|
256 |
+
- `skip_memory_metrics`: True
|
257 |
+
- `use_legacy_prediction_loop`: False
|
258 |
+
- `push_to_hub`: False
|
259 |
+
- `resume_from_checkpoint`: None
|
260 |
+
- `hub_model_id`: None
|
261 |
+
- `hub_strategy`: every_save
|
262 |
+
- `hub_private_repo`: None
|
263 |
+
- `hub_always_push`: False
|
264 |
+
- `gradient_checkpointing`: False
|
265 |
+
- `gradient_checkpointing_kwargs`: None
|
266 |
+
- `include_inputs_for_metrics`: False
|
267 |
+
- `include_for_metrics`: []
|
268 |
+
- `eval_do_concat_batches`: True
|
269 |
+
- `fp16_backend`: auto
|
270 |
+
- `push_to_hub_model_id`: None
|
271 |
+
- `push_to_hub_organization`: None
|
272 |
+
- `mp_parameters`:
|
273 |
+
- `auto_find_batch_size`: False
|
274 |
+
- `full_determinism`: False
|
275 |
+
- `torchdynamo`: None
|
276 |
+
- `ray_scope`: last
|
277 |
+
- `ddp_timeout`: 1800
|
278 |
+
- `torch_compile`: False
|
279 |
+
- `torch_compile_backend`: None
|
280 |
+
- `torch_compile_mode`: None
|
281 |
+
- `dispatch_batches`: None
|
282 |
+
- `split_batches`: None
|
283 |
+
- `include_tokens_per_second`: False
|
284 |
+
- `include_num_input_tokens_seen`: False
|
285 |
+
- `neftune_noise_alpha`: None
|
286 |
+
- `optim_target_modules`: None
|
287 |
+
- `batch_eval_metrics`: False
|
288 |
+
- `eval_on_start`: False
|
289 |
+
- `use_liger_kernel`: False
|
290 |
+
- `eval_use_gather_object`: False
|
291 |
+
- `average_tokens_across_devices`: False
|
292 |
+
- `prompts`: None
|
293 |
+
- `batch_sampler`: batch_sampler
|
294 |
+
- `multi_dataset_batch_sampler`: round_robin
|
295 |
+
|
296 |
+
</details>
|
297 |
+
|
298 |
+
### Training Logs
|
299 |
+
| Epoch | Step | Training Loss |
|
300 |
+
|:------:|:----:|:-------------:|
|
301 |
+
| 0.4888 | 500 | 0.385 |
|
302 |
+
| 0.9775 | 1000 | 0.0597 |
|
303 |
+
| 1.4663 | 1500 | 0.0209 |
|
304 |
+
| 1.9550 | 2000 | 0.0176 |
|
305 |
+
| 2.4438 | 2500 | 0.0089 |
|
306 |
+
| 2.9326 | 3000 | 0.0072 |
|
307 |
+
|
308 |
+
|
309 |
+
### Framework Versions
|
310 |
+
- Python: 3.10.12
|
311 |
+
- Sentence Transformers: 3.4.1
|
312 |
+
- Transformers: 4.50.0
|
313 |
+
- PyTorch: 2.5.1+cu124
|
314 |
+
- Accelerate: 1.5.2
|
315 |
+
- Datasets: 3.4.1
|
316 |
+
- Tokenizers: 0.21.1
|
317 |
+
|
318 |
+
## Citation
|
319 |
+
|
320 |
+
### BibTeX
|
321 |
+
|
322 |
+
#### Sentence Transformers
|
323 |
+
```bibtex
|
324 |
+
@inproceedings{reimers-2019-sentence-bert,
|
325 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
326 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
327 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
328 |
+
month = "11",
|
329 |
+
year = "2019",
|
330 |
+
publisher = "Association for Computational Linguistics",
|
331 |
+
url = "https://arxiv.org/abs/1908.10084",
|
332 |
+
}
|
333 |
+
```
|
334 |
+
|
335 |
+
#### MultipleNegativesRankingLoss
|
336 |
+
```bibtex
|
337 |
+
@misc{henderson2017efficient,
|
338 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
339 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
340 |
+
year={2017},
|
341 |
+
eprint={1705.00652},
|
342 |
+
archivePrefix={arXiv},
|
343 |
+
primaryClass={cs.CL}
|
344 |
+
}
|
345 |
+
```
|
346 |
+
|
347 |
+
<!--
|
348 |
+
## Glossary
|
349 |
+
|
350 |
+
*Clearly define terms in order to be accessible across audiences.*
|
351 |
+
-->
|
352 |
+
|
353 |
+
<!--
|
354 |
+
## Model Card Authors
|
355 |
+
|
356 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
357 |
+
-->
|
358 |
+
|
359 |
+
<!--
|
360 |
+
## Model Card Contact
|
361 |
+
|
362 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
363 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"NeoBERT"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "chandar-lab/NeoBERT--model.NeoBERTConfig",
|
7 |
+
"AutoModel": "chandar-lab/NeoBERT--model.NeoBERT",
|
8 |
+
"AutoModelForMaskedLM": "chandar-lab/NeoBERT--model.NeoBERTLMHead",
|
9 |
+
"AutoModelForSequenceClassification": "chandar-lab/NeoBERT--model.NeoBERTForSequenceClassification"
|
10 |
+
},
|
11 |
+
"classifier_init_range": 0.02,
|
12 |
+
"decoder_init_range": 0.02,
|
13 |
+
"dim_head": 64,
|
14 |
+
"embedding_init_range": 0.02,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"kwargs": {
|
18 |
+
"_commit_hash": "2e41a1bd984aa78d10daa96e4745303541957410",
|
19 |
+
"architectures": [
|
20 |
+
"NeoBERTLMHead"
|
21 |
+
],
|
22 |
+
"attn_implementation": null,
|
23 |
+
"auto_map": {
|
24 |
+
"AutoConfig": "chandar-lab/NeoBERT--model.NeoBERTConfig",
|
25 |
+
"AutoModel": "chandar-lab/NeoBERT--model.NeoBERT",
|
26 |
+
"AutoModelForMaskedLM": "chandar-lab/NeoBERT--model.NeoBERTLMHead",
|
27 |
+
"AutoModelForSequenceClassification": "chandar-lab/NeoBERT--model.NeoBERTForSequenceClassification"
|
28 |
+
},
|
29 |
+
"classifier_init_range": 0.02,
|
30 |
+
"dim_head": 64,
|
31 |
+
"kwargs": {
|
32 |
+
"classifier_init_range": 0.02,
|
33 |
+
"pretrained_model_name_or_path": "google-bert/bert-base-uncased",
|
34 |
+
"trust_remote_code": true
|
35 |
+
},
|
36 |
+
"model_type": "neobert",
|
37 |
+
"pretrained_model_name_or_path": "google-bert/bert-base-uncased",
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.48.2",
|
40 |
+
"trust_remote_code": true
|
41 |
+
},
|
42 |
+
"max_length": 4096,
|
43 |
+
"model_type": "neobert",
|
44 |
+
"norm_eps": 1e-05,
|
45 |
+
"num_attention_heads": 12,
|
46 |
+
"num_hidden_layers": 28,
|
47 |
+
"pad_token_id": 0,
|
48 |
+
"pretrained_model_name_or_path": "google-bert/bert-base-uncased",
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.50.0",
|
51 |
+
"trust_remote_code": true,
|
52 |
+
"vocab_size": 30522
|
53 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.50.0",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d238df8ffd0acdf98a707d888f84a8af47ee7e4b888910bb81d85f8f605e1acd
|
3 |
+
size 886680744
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": null,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_input_names": [
|
50 |
+
"input_ids",
|
51 |
+
"attention_mask"
|
52 |
+
],
|
53 |
+
"model_max_length": 4096,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"sep_token": "[SEP]",
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"unk_token": "[UNK]",
|
60 |
+
"vocab_size": 30522
|
61 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|