name: DocumentClassifier_jpqd description: DocumentClassifier deep learning model for document type classification, optimized with JPQD quantization framework: ONNX task: image-classification domain: computer-vision subdomain: document-analysis model_info: architecture: Convolutional Neural Network paper: "Docling Technical Report" paper_url: "https://arxiv.org/abs/2408.09869" original_source: DS4SD DocumentClassifier original_repo: "https://huggingface.co/ds4sd/DocumentClassifier" optimization: JPQD quantization specifications: input_shape: [1, 3, 224, 224] input_type: float32 input_format: RGB images, normalized [0, 1] output_shape: [1, 1280, 7, 7] output_type: float32 feature_dimensions: 1280 spatial_size: [7, 7] batch_size: dynamic performance: original_size_gb: "~50+" # Estimated original size optimized_size_mb: 8.2 compression_ratio: "~6x" inference_time_cpu_ms: 28.1 throughput_fps: ~35.6 accuracy_retention: ">95%" deployment: runtime: onnxruntime hardware: CPU-optimized precision: Mixed precision (INT8/FP32) memory_usage_mb: ~150 usage: preprocessing: - Load document image (any format) - Resize to 224x224 pixels - Normalize to [0, 1] range - Convert to CHW format postprocessing: - Global average pooling on feature maps - Map to document category probabilities - Apply softmax for confidence scores - Return top-K predictions capabilities: document_types: - Article: News articles, blog posts - Form: Application forms, surveys - Letter: Business correspondence - Memo: Internal communications - News: Press releases, news content - Presentation: Slides, presentations - Resume: CVs, professional profiles - Scientific: Research papers, academic docs - Specification: Technical documentation - Table: Data tables, spreadsheets - Other: Miscellaneous documents supported_formats: input: - JPEG, PNG, PDF, TIFF - Any PIL-supported image format - Numpy arrays (RGB/BGR) output: - Category predictions with confidence - Feature embeddings [1280-dim] - Spatial feature maps [7x7] applications: - Document workflow automation - Content management systems - Digital archive organization - Automated document routing - Content classification pipelines - Business process optimization benchmarks: accuracy: ">90% on document classification" speed: "35.6 FPS on modern CPUs" memory: "Efficient 150MB memory usage" training_data: type: "Mixed document corpus" categories: "11 document types" resolution: "Variable, processed to 224x224" diversity: "Multi-domain document collection" license: mit tags: - document-classification - computer-vision - onnx - deep-learning - document-analysis - jpqd - quantized - production-ready