autoprogrammer commited on
Commit
2d71b48
·
verified ·
1 Parent(s): 12b9e8b

Upload checkpoint from checkpoint-351

Browse files
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_deepseek.DeepseekV2Config",
9
+ "AutoModel": "modeling_deepseek.DeepseekV2ForCausalLM",
10
+ "AutoModelForCausalLM": "autoprogrammer/deepseekv2lite_densemixer--modeling_deepseek.DeepseekV2ForCausalLM"
11
+ },
12
+ "aux_loss_alpha": 0.001,
13
+ "bos_token_id": 100000,
14
+ "eos_token_id": 100001,
15
+ "ep_size": 1,
16
+ "first_k_dense_replace": 1,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 2048,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 10944,
21
+ "kv_lora_rank": 512,
22
+ "max_position_embeddings": 163840,
23
+ "model_type": "deepseek_v2",
24
+ "moe_intermediate_size": 1408,
25
+ "moe_layer_freq": 1,
26
+ "n_group": 1,
27
+ "n_routed_experts": 64,
28
+ "n_shared_experts": 2,
29
+ "norm_topk_prob": false,
30
+ "num_attention_heads": 16,
31
+ "num_experts_per_tok": 6,
32
+ "num_hidden_layers": 27,
33
+ "num_key_value_heads": 16,
34
+ "pretraining_tp": 1,
35
+ "q_lora_rank": null,
36
+ "qk_nope_head_dim": 128,
37
+ "qk_rope_head_dim": 64,
38
+ "rms_norm_eps": 1e-06,
39
+ "rope_scaling": {
40
+ "beta_fast": 32,
41
+ "beta_slow": 1,
42
+ "factor": 40,
43
+ "mscale": 0.707,
44
+ "mscale_all_dim": 0.707,
45
+ "original_max_position_embeddings": 4096,
46
+ "type": "yarn"
47
+ },
48
+ "rope_theta": 10000,
49
+ "routed_scaling_factor": 1.0,
50
+ "scoring_func": "softmax",
51
+ "seq_aux": true,
52
+ "tie_word_embeddings": false,
53
+ "topk_group": 1,
54
+ "topk_method": "greedy",
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.51.3",
57
+ "use_cache": false,
58
+ "v_head_dim": 128,
59
+ "vocab_size": 102400
60
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+
102
+ ```python
103
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
104
+
105
+ >>> # Initializing a Deepseek-V2 style configuration
106
+ >>> configuration = DeepseekV2Config()
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = "deepseek_v2"
113
+ keys_to_ignore_at_inference = ["past_key_values"]
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=102400,
118
+ hidden_size=4096,
119
+ intermediate_size=11008,
120
+ moe_intermediate_size = 1407,
121
+ num_hidden_layers=30,
122
+ num_attention_heads=32,
123
+ num_key_value_heads=32,
124
+ n_shared_experts = None,
125
+ n_routed_experts = None,
126
+ ep_size = 1,
127
+ routed_scaling_factor = 1.0,
128
+ kv_lora_rank = 512,
129
+ q_lora_rank = 1536,
130
+ qk_rope_head_dim = 64,
131
+ v_head_dim = 128,
132
+ qk_nope_head_dim = 128,
133
+ topk_method = 'gready',
134
+ n_group = None,
135
+ topk_group = None,
136
+ num_experts_per_tok = None,
137
+ moe_layer_freq = 1,
138
+ first_k_dense_replace = 0,
139
+ norm_topk_prob = False,
140
+ scoring_func = 'softmax',
141
+ aux_loss_alpha = 0.001,
142
+ seq_aux = True,
143
+ hidden_act="silu",
144
+ max_position_embeddings=2048,
145
+ initializer_range=0.02,
146
+ rms_norm_eps=1e-6,
147
+ use_cache=True,
148
+ pad_token_id=None,
149
+ bos_token_id=100000,
150
+ eos_token_id=100001,
151
+ pretraining_tp=1,
152
+ tie_word_embeddings=False,
153
+ rope_theta=10000.0,
154
+ rope_scaling=None,
155
+ attention_bias=False,
156
+ attention_dropout=0.0,
157
+ **kwargs,
158
+ ):
159
+ self.vocab_size = vocab_size
160
+ self.max_position_embeddings = max_position_embeddings
161
+ self.hidden_size = hidden_size
162
+ self.intermediate_size = intermediate_size
163
+ self.moe_intermediate_size = moe_intermediate_size
164
+ self.num_hidden_layers = num_hidden_layers
165
+ self.num_attention_heads = num_attention_heads
166
+ self.n_shared_experts = n_shared_experts
167
+ self.n_routed_experts = n_routed_experts
168
+ self.ep_size = ep_size
169
+ self.routed_scaling_factor = routed_scaling_factor
170
+ self.kv_lora_rank = kv_lora_rank
171
+ self.q_lora_rank = q_lora_rank
172
+ self.qk_rope_head_dim = qk_rope_head_dim
173
+ self.v_head_dim = v_head_dim
174
+ self.qk_nope_head_dim = qk_nope_head_dim
175
+ self.topk_method = topk_method
176
+ self.n_group = n_group
177
+ self.topk_group = topk_group
178
+ self.num_experts_per_tok = num_experts_per_tok
179
+ self.moe_layer_freq = moe_layer_freq
180
+ self.first_k_dense_replace = first_k_dense_replace
181
+ self.norm_topk_prob = norm_topk_prob
182
+ self.scoring_func = scoring_func
183
+ self.aux_loss_alpha = aux_loss_alpha
184
+ self.seq_aux = seq_aux
185
+ # for backward compatibility
186
+ if num_key_value_heads is None:
187
+ num_key_value_heads = num_attention_heads
188
+
189
+ self.num_key_value_heads = num_key_value_heads
190
+ self.hidden_act = hidden_act
191
+ self.initializer_range = initializer_range
192
+ self.rms_norm_eps = rms_norm_eps
193
+ self.pretraining_tp = pretraining_tp
194
+ self.use_cache = use_cache
195
+ self.rope_theta = rope_theta
196
+ self.rope_scaling = rope_scaling
197
+ self.attention_bias = attention_bias
198
+ self.attention_dropout = attention_dropout
199
+
200
+ super().__init__(
201
+ pad_token_id=pad_token_id,
202
+ bos_token_id=bos_token_id,
203
+ eos_token_id=eos_token_id,
204
+ tie_word_embeddings=tie_word_embeddings,
205
+ **kwargs,
206
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "do_sample": true,
5
+ "eos_token_id": 100001,
6
+ "temperature": 0.3,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.51.3"
9
+ }
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf100c546c06d02eb71b2ca2b75f53e153cc971ba8480208c497c350a2c2e34e
3
+ size 4994763632
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fca0da234c52a13c6c92ef0871cf7b7225194f9807ecaa51a6ba10a3d8bbf3ba
3
+ size 4995044944
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74e13247732d6e1286a03e4f57c82ab4a7ce9a245b0ba2acdb2c59a88cc8e5b7
3
+ size 4996085000
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc32bfae15dda9eebc283d4f862c309ac88f5537f72fd9bfd9d400772553817f
3
+ size 4996085224
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27b3689e1d8d86ebeb0493e93aaec70b539fb74bc51b7de5c74466fe6939b3b1
3
+ size 4996085224
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d593cea64444c5e9ff232946ebcee3e4d09192d6864be0c16653d8060fe0db
3
+ size 4995045792
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2bb08466a62240c89883d0ce6607403d3743f52b5cd110ebee8b5c0a685e9f3
3
+ size 1440515736
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_deepseek.py ADDED
@@ -0,0 +1,2030 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV2Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV2RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
+
113
+
114
+ class DeepseekV2RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV2MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.alpha = config.aux_loss_alpha
402
+ self.seq_aux = config.seq_aux
403
+ self.topk_method = config.topk_method
404
+ self.n_group = config.n_group
405
+ self.topk_group = config.topk_group
406
+
407
+ # topk selection algorithm
408
+ self.norm_topk_prob = config.norm_topk_prob
409
+ self.gating_dim = config.hidden_size
410
+ self.weight = nn.Parameter(
411
+ torch.empty((self.n_routed_experts, self.gating_dim))
412
+ )
413
+ self.reset_parameters()
414
+
415
+ def reset_parameters(self) -> None:
416
+ import torch.nn.init as init
417
+
418
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
+
420
+ def forward(self, hidden_states):
421
+ bsz, seq_len, h = hidden_states.shape
422
+ ### compute gating score
423
+ hidden_states = hidden_states.view(-1, h)
424
+ logits = F.linear(
425
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
+ )
427
+ if self.scoring_func == "softmax":
428
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
429
+ else:
430
+ raise NotImplementedError(
431
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
+ )
433
+
434
+ ### select top-k experts
435
+ if self.topk_method == "greedy":
436
+ topk_weight, topk_idx = torch.topk(
437
+ scores, k=self.top_k, dim=-1, sorted=False
438
+ )
439
+ elif self.topk_method == "group_limited_greedy":
440
+ group_scores = (
441
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
442
+ ) # [n, n_group]
443
+ group_idx = torch.topk(
444
+ group_scores, k=self.topk_group, dim=-1, sorted=False
445
+ )[
446
+ 1
447
+ ] # [n, top_k_group]
448
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
+ score_mask = (
451
+ group_mask.unsqueeze(-1)
452
+ .expand(
453
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
+ )
455
+ .reshape(bsz * seq_len, -1)
456
+ ) # [n, e]
457
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
458
+ topk_weight, topk_idx = torch.topk(
459
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
460
+ )
461
+
462
+ ### norm gate to sum 1
463
+ if self.top_k > 1 and self.norm_topk_prob:
464
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
465
+ topk_weight = topk_weight / denominator
466
+ else:
467
+ topk_weight = topk_weight * self.routed_scaling_factor
468
+ ### expert-level computation auxiliary loss
469
+ if self.training and self.alpha > 0.0:
470
+ scores_for_aux = scores
471
+ aux_topk = self.top_k
472
+ # always compute aux loss based on the naive greedy topk method
473
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
474
+ if self.seq_aux:
475
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
476
+ ce = torch.zeros(
477
+ bsz, self.n_routed_experts, device=hidden_states.device
478
+ )
479
+ ce.scatter_add_(
480
+ 1,
481
+ topk_idx_for_aux_loss,
482
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
483
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
484
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
485
+ dim=1
486
+ ).mean() * self.alpha
487
+ else:
488
+ mask_ce = F.one_hot(
489
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
490
+ )
491
+ ce = mask_ce.float().mean(0)
492
+ Pi = scores_for_aux.mean(0)
493
+ fi = ce * self.n_routed_experts
494
+ aux_loss = (Pi * fi).sum() * self.alpha
495
+ else:
496
+ aux_loss = None
497
+ return topk_idx, topk_weight, aux_loss
498
+
499
+
500
+ class AddAuxiliaryLoss(torch.autograd.Function):
501
+ """
502
+ The trick function of adding auxiliary (aux) loss,
503
+ which includes the gradient of the aux loss during backpropagation.
504
+ """
505
+
506
+ @staticmethod
507
+ def forward(ctx, x, loss):
508
+ assert loss.numel() == 1
509
+ ctx.dtype = loss.dtype
510
+ ctx.required_aux_loss = loss.requires_grad
511
+ return x
512
+
513
+ @staticmethod
514
+ def backward(ctx, grad_output):
515
+ grad_loss = None
516
+ if ctx.required_aux_loss:
517
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
518
+ return grad_output, grad_loss
519
+
520
+
521
+ class DeepseekV2MoE(nn.Module):
522
+ """
523
+ A mixed expert module containing shared experts.
524
+ """
525
+
526
+ def __init__(self, config):
527
+ super().__init__()
528
+ self.config = config
529
+ self.num_experts_per_tok = config.num_experts_per_tok
530
+
531
+ if hasattr(config, "ep_size") and config.ep_size > 1:
532
+ assert config.ep_size == dist.get_world_size()
533
+ self.ep_size = config.ep_size
534
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
535
+ self.ep_rank = dist.get_rank()
536
+ self.experts = nn.ModuleList(
537
+ [
538
+ (
539
+ DeepseekV2MLP(
540
+ config, intermediate_size=config.moe_intermediate_size
541
+ )
542
+ if i >= self.ep_rank * self.experts_per_rank
543
+ and i < (self.ep_rank + 1) * self.experts_per_rank
544
+ else None
545
+ )
546
+ for i in range(config.n_routed_experts)
547
+ ]
548
+ )
549
+ else:
550
+ self.ep_size = 1
551
+ self.experts_per_rank = config.n_routed_experts
552
+ self.ep_rank = 0
553
+ self.experts = nn.ModuleList(
554
+ [
555
+ DeepseekV2MLP(
556
+ config, intermediate_size=config.moe_intermediate_size
557
+ )
558
+ for i in range(config.n_routed_experts)
559
+ ]
560
+ )
561
+ self.gate = MoEGate(config)
562
+ if config.n_shared_experts is not None:
563
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
564
+ self.shared_experts = DeepseekV2MLP(
565
+ config=config, intermediate_size=intermediate_size
566
+ )
567
+
568
+ def forward_original(self, hidden_states):
569
+ """Original forward method, kept for comparison and rollback"""
570
+ identity = hidden_states
571
+ orig_shape = hidden_states.shape
572
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
573
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
574
+ flat_topk_idx = topk_idx.view(-1)
575
+ if self.training:
576
+ hidden_states = hidden_states.repeat_interleave(
577
+ self.num_experts_per_tok, dim=0
578
+ )
579
+ y = torch.empty_like(hidden_states)
580
+ for i, expert in enumerate(self.experts):
581
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
582
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
583
+ y = y.to(hidden_states.dtype).view(*orig_shape)
584
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
585
+ else:
586
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
587
+ if self.config.n_shared_experts is not None:
588
+ y = y + self.shared_experts(identity)
589
+ return y
590
+
591
+ def forward(self, hidden_states):
592
+ """
593
+ Forward pass implementing dense backward functionality:
594
+ Forward output remains the same as official (sparse computation result), but gradients flow back through dense computation during backward pass
595
+
596
+ Dense Backward mechanism explanation:
597
+ 1. During forward pass, only top-k experts participate in computation (sparse forward)
598
+ 2. During backward pass, all experts receive gradients (dense backward)
599
+ 3. Uses straight-through gradient technique: sparse_output.detach() + (dense_output - dense_output.detach())
600
+ 4. Uses register_hook to ensure only activated experts actually update parameters
601
+
602
+ Args:
603
+ hidden_states: Input tensor, shape (batch_size, seq_length, hidden_dim)
604
+
605
+ Returns:
606
+ Output tensor, shape (batch_size, seq_length, hidden_dim)
607
+ """
608
+ batch_size, seq_length, hidden_dim = hidden_states.shape
609
+ dtype = hidden_states.dtype
610
+ device = hidden_states.device
611
+
612
+ identity = hidden_states
613
+ orig_shape = hidden_states.shape
614
+
615
+ # Step 1: Compute routing logic, select top-k experts
616
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
617
+ flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
618
+ N_tokens = flat_hidden.size(0)
619
+ flat_topk_idx = topk_idx.view(-1)
620
+
621
+ # Step 2: Compute complete routing weights (for dense backward)
622
+ # Note: V2 version forces float32 computation
623
+ router_logits = F.linear(
624
+ flat_hidden.type(torch.float32),
625
+ self.gate.weight.type(torch.float32),
626
+ None
627
+ )
628
+ if self.gate.scoring_func == 'softmax':
629
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float32) # (N_tokens, n_routed_experts)
630
+ else:
631
+ raise NotImplementedError(f'Unsupported scoring function: {self.gate.scoring_func}')
632
+
633
+ routing_weights = routing_weights.to(dtype=dtype)
634
+
635
+ # Step 3: Prepare output accumulators
636
+ dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
637
+ sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
638
+
639
+ # Step 4: Compute for each expert
640
+ if self.training:
641
+ # Training mode: implement dense backward
642
+ for expert_idx in range(self.config.n_routed_experts):
643
+ # V2 version experts may be None (in EP mode)
644
+ if self.experts[expert_idx] is None:
645
+ continue
646
+
647
+ expert_layer = self.experts[expert_idx]
648
+
649
+ # Compute current expert output for all tokens (dense computation)
650
+ expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
651
+
652
+ # Create activation mask: mark which tokens selected this expert
653
+ activation_mask = (topk_idx == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
654
+
655
+ # Register hook: only selected tokens can pass gradients to this expert
656
+ if expert_output.requires_grad:
657
+ expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
658
+
659
+ expert_output = expert_output.to(dtype=dtype)
660
+
661
+ # Dense accumulation: use complete routing weights
662
+ weight_full = routing_weights[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
663
+ dense_outputs = dense_outputs + expert_output * weight_full
664
+
665
+ # Sparse accumulation: only accumulate selected expert outputs
666
+ matches = (topk_idx == expert_idx)
667
+ if matches.any():
668
+ token_indices, k_indices = torch.where(matches)
669
+ weights_topk = topk_weight[token_indices, k_indices].unsqueeze(-1).to(sparse_outputs.dtype) # (num_matches, 1)
670
+ sparse_outputs[token_indices] = sparse_outputs[token_indices] + expert_output[token_indices] * weights_topk
671
+ else:
672
+ # Inference mode: use original sparse computation logic
673
+ sparse_outputs = self.moe_infer(flat_hidden, topk_idx, topk_weight)
674
+ # Dense outputs not needed during inference
675
+ dense_outputs = sparse_outputs
676
+
677
+ # Step 5: Add shared experts (if any)
678
+ if self.config.n_shared_experts is not None:
679
+ shared_expert_output = self.shared_experts(identity)
680
+ sparse_outputs = sparse_outputs.view(*orig_shape) + shared_expert_output
681
+ dense_outputs = dense_outputs.view(*orig_shape) + shared_expert_output
682
+ else:
683
+ sparse_outputs = sparse_outputs.view(*orig_shape)
684
+ dense_outputs = dense_outputs.view(*orig_shape)
685
+
686
+ # Step 6: Use straight-through gradient technique to combine sparse forward and dense backward
687
+ if self.training:
688
+ # Forward uses sparse, backward uses dense
689
+ final_output = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
690
+ # Add auxiliary loss
691
+ final_output = AddAuxiliaryLoss.apply(final_output, aux_loss)
692
+ else:
693
+ final_output = sparse_outputs
694
+
695
+ return final_output
696
+
697
+ @torch.no_grad()
698
+ def moe_infer(self, x, topk_ids, topk_weight):
699
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
700
+ cnts.scatter_(1, topk_ids, 1)
701
+ tokens_per_expert = cnts.sum(dim=0)
702
+ idxs = topk_ids.view(-1).argsort()
703
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
704
+ sorted_tokens_shape = sorted_tokens.shape
705
+ if self.ep_size > 1:
706
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
707
+ tokens_per_expert_group = tokens_per_expert.new_empty(
708
+ tokens_per_expert.shape[0]
709
+ )
710
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
711
+ output_splits = (
712
+ tokens_per_expert_group.view(self.ep_size, -1)
713
+ .sum(1)
714
+ .cpu()
715
+ .numpy()
716
+ .tolist()
717
+ )
718
+ gathered_tokens = sorted_tokens.new_empty(
719
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
720
+ )
721
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
722
+ dist.all_to_all(
723
+ list(gathered_tokens.split(output_splits)),
724
+ list(sorted_tokens.split(input_split_sizes)),
725
+ )
726
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
727
+ self.ep_size, self.experts_per_rank
728
+ ).sum(dim=0)
729
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
730
+ s = 0
731
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
732
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
733
+ s += k
734
+ gatherd_idxs = gatherd_idxs.argsort()
735
+ sorted_tokens = gathered_tokens[gatherd_idxs]
736
+ tokens_per_expert = tokens_per_expert_post_gather
737
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
738
+
739
+ outputs = []
740
+ start_idx = 0
741
+ for i, num_tokens in enumerate(tokens_per_expert):
742
+ end_idx = start_idx + num_tokens
743
+ if num_tokens == 0:
744
+ continue
745
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
746
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
747
+ expert_out = expert(tokens_for_this_expert)
748
+ outputs.append(expert_out)
749
+ start_idx = end_idx
750
+
751
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
752
+ if self.ep_size > 1:
753
+ new_x = torch.empty_like(outs)
754
+ new_x[gatherd_idxs] = outs
755
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
756
+ dist.all_to_all(
757
+ list(gathered_tokens.split(input_split_sizes)),
758
+ list(new_x.split(output_splits)),
759
+ )
760
+ outs = gathered_tokens
761
+
762
+ new_x = torch.empty_like(outs)
763
+ new_x[idxs] = outs
764
+ final_out = (
765
+ new_x.view(*topk_ids.shape, -1)
766
+ .type(topk_weight.dtype)
767
+ .mul_(topk_weight.unsqueeze(dim=-1))
768
+ .sum(dim=1)
769
+ .type(new_x.dtype)
770
+ )
771
+ return final_out
772
+
773
+
774
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
775
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
776
+ """
777
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
778
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
779
+ """
780
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
781
+ if n_rep == 1:
782
+ return hidden_states
783
+ hidden_states = hidden_states[:, :, None, :, :].expand(
784
+ batch, num_key_value_heads, n_rep, slen, head_dim
785
+ )
786
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
787
+
788
+
789
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
790
+ class DeepseekV2Attention(nn.Module):
791
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
792
+
793
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
794
+ super().__init__()
795
+ self.config = config
796
+ self.layer_idx = layer_idx
797
+ if layer_idx is None:
798
+ logger.warning_once(
799
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
800
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
801
+ "when creating this class."
802
+ )
803
+
804
+ self.attention_dropout = config.attention_dropout
805
+ self.hidden_size = config.hidden_size
806
+ self.num_heads = config.num_attention_heads
807
+
808
+ self.max_position_embeddings = config.max_position_embeddings
809
+ self.rope_theta = config.rope_theta
810
+ self.q_lora_rank = config.q_lora_rank
811
+ self.qk_rope_head_dim = config.qk_rope_head_dim
812
+ self.kv_lora_rank = config.kv_lora_rank
813
+ self.v_head_dim = config.v_head_dim
814
+ self.qk_nope_head_dim = config.qk_nope_head_dim
815
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
816
+
817
+ self.is_causal = True
818
+
819
+ if self.q_lora_rank is None:
820
+ self.q_proj = nn.Linear(
821
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
822
+ )
823
+ else:
824
+ self.q_a_proj = nn.Linear(
825
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
826
+ )
827
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
828
+ self.q_b_proj = nn.Linear(
829
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
830
+ )
831
+
832
+ self.kv_a_proj_with_mqa = nn.Linear(
833
+ self.hidden_size,
834
+ config.kv_lora_rank + config.qk_rope_head_dim,
835
+ bias=config.attention_bias,
836
+ )
837
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
838
+ self.kv_b_proj = nn.Linear(
839
+ config.kv_lora_rank,
840
+ self.num_heads
841
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
842
+ bias=False,
843
+ )
844
+
845
+ self.o_proj = nn.Linear(
846
+ self.num_heads * self.v_head_dim,
847
+ self.hidden_size,
848
+ bias=config.attention_bias,
849
+ )
850
+ self._init_rope()
851
+
852
+ self.softmax_scale = self.q_head_dim ** (-0.5)
853
+ if self.config.rope_scaling is not None:
854
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
855
+ scaling_factor = self.config.rope_scaling["factor"]
856
+ if mscale_all_dim:
857
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
858
+ self.softmax_scale = self.softmax_scale * mscale * mscale
859
+
860
+ def _init_rope(self):
861
+ if self.config.rope_scaling is None:
862
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
863
+ self.qk_rope_head_dim,
864
+ max_position_embeddings=self.max_position_embeddings,
865
+ base=self.rope_theta,
866
+ )
867
+ else:
868
+ scaling_type = self.config.rope_scaling["type"]
869
+ scaling_factor = self.config.rope_scaling["factor"]
870
+ if scaling_type == "linear":
871
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
872
+ self.qk_rope_head_dim,
873
+ max_position_embeddings=self.max_position_embeddings,
874
+ scaling_factor=scaling_factor,
875
+ base=self.rope_theta,
876
+ )
877
+ elif scaling_type == "dynamic":
878
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
879
+ self.qk_rope_head_dim,
880
+ max_position_embeddings=self.max_position_embeddings,
881
+ scaling_factor=scaling_factor,
882
+ base=self.rope_theta,
883
+ )
884
+ elif scaling_type == "yarn":
885
+ kwargs = {
886
+ key: self.config.rope_scaling[key]
887
+ for key in [
888
+ "original_max_position_embeddings",
889
+ "beta_fast",
890
+ "beta_slow",
891
+ "mscale",
892
+ "mscale_all_dim",
893
+ ]
894
+ if key in self.config.rope_scaling
895
+ }
896
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
897
+ self.qk_rope_head_dim,
898
+ max_position_embeddings=self.max_position_embeddings,
899
+ scaling_factor=scaling_factor,
900
+ base=self.rope_theta,
901
+ **kwargs,
902
+ )
903
+ else:
904
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
905
+
906
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
907
+ return (
908
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
909
+ .transpose(1, 2)
910
+ .contiguous()
911
+ )
912
+
913
+ def forward(
914
+ self,
915
+ hidden_states: torch.Tensor,
916
+ attention_mask: Optional[torch.Tensor] = None,
917
+ position_ids: Optional[torch.LongTensor] = None,
918
+ past_key_value: Optional[Cache] = None,
919
+ output_attentions: bool = False,
920
+ use_cache: bool = False,
921
+ **kwargs,
922
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
923
+ if "padding_mask" in kwargs:
924
+ warnings.warn(
925
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
926
+ )
927
+ bsz, q_len, _ = hidden_states.size()
928
+
929
+ if self.q_lora_rank is None:
930
+ q = self.q_proj(hidden_states)
931
+ else:
932
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
933
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
934
+ q_nope, q_pe = torch.split(
935
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
936
+ )
937
+
938
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
939
+ compressed_kv, k_pe = torch.split(
940
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
941
+ )
942
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
943
+ kv = (
944
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
945
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
946
+ .transpose(1, 2)
947
+ )
948
+
949
+ k_nope, value_states = torch.split(
950
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
951
+ )
952
+ kv_seq_len = value_states.shape[-2]
953
+ if past_key_value is not None:
954
+ if self.layer_idx is None:
955
+ raise ValueError(
956
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
957
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
958
+ "with a layer index."
959
+ )
960
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
961
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
962
+
963
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
964
+
965
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
966
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
967
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
968
+
969
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
970
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
971
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
972
+ if past_key_value is not None:
973
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
974
+ key_states, value_states = past_key_value.update(
975
+ key_states, value_states, self.layer_idx, cache_kwargs
976
+ )
977
+
978
+ attn_weights = (
979
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
980
+ )
981
+
982
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
983
+ raise ValueError(
984
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
985
+ f" {attn_weights.size()}"
986
+ )
987
+ assert attention_mask is not None
988
+ if attention_mask is not None:
989
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
990
+ raise ValueError(
991
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
992
+ )
993
+ attn_weights = attn_weights + attention_mask
994
+
995
+ # upcast attention to fp32
996
+ attn_weights = nn.functional.softmax(
997
+ attn_weights, dim=-1, dtype=torch.float32
998
+ ).to(query_states.dtype)
999
+ attn_weights = nn.functional.dropout(
1000
+ attn_weights, p=self.attention_dropout, training=self.training
1001
+ )
1002
+ attn_output = torch.matmul(attn_weights, value_states)
1003
+
1004
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
1005
+ raise ValueError(
1006
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
1007
+ f" {attn_output.size()}"
1008
+ )
1009
+
1010
+ attn_output = attn_output.transpose(1, 2).contiguous()
1011
+
1012
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
1013
+
1014
+ attn_output = self.o_proj(attn_output)
1015
+
1016
+ if not output_attentions:
1017
+ attn_weights = None
1018
+
1019
+ return attn_output, attn_weights, past_key_value
1020
+
1021
+
1022
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
1023
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
1024
+ """
1025
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
1026
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
1027
+ flash attention and deal with padding tokens in case the input contains any of them.
1028
+ """
1029
+
1030
+ def __init__(self, *args, **kwargs):
1031
+ super().__init__(*args, **kwargs)
1032
+
1033
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
1034
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
1035
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
1036
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
1037
+
1038
+ def forward(
1039
+ self,
1040
+ hidden_states: torch.Tensor,
1041
+ attention_mask: Optional[torch.LongTensor] = None,
1042
+ position_ids: Optional[torch.LongTensor] = None,
1043
+ past_key_value: Optional[Cache] = None,
1044
+ output_attentions: bool = False,
1045
+ use_cache: bool = False,
1046
+ **kwargs,
1047
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1048
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
1049
+ if "padding_mask" in kwargs:
1050
+ warnings.warn(
1051
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1052
+ )
1053
+
1054
+ # overwrite attention_mask with padding_mask
1055
+ attention_mask = kwargs.pop("padding_mask")
1056
+
1057
+ output_attentions = False
1058
+
1059
+ bsz, q_len, _ = hidden_states.size()
1060
+
1061
+ if self.q_lora_rank is None:
1062
+ q = self.q_proj(hidden_states)
1063
+ else:
1064
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
1065
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
1066
+ q_nope, q_pe = torch.split(
1067
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
1068
+ )
1069
+
1070
+ # Flash attention requires the input to have the shape
1071
+ # batch_size x seq_length x head_dim x hidden_dim
1072
+ # therefore we just need to keep the original shape
1073
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
1074
+ compressed_kv, k_pe = torch.split(
1075
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
1076
+ )
1077
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
1078
+ kv = (
1079
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
1080
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
1081
+ .transpose(1, 2)
1082
+ )
1083
+
1084
+ k_nope, value_states = torch.split(
1085
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1086
+ )
1087
+ kv_seq_len = value_states.shape[-2]
1088
+
1089
+ kv_seq_len = value_states.shape[-2]
1090
+ if past_key_value is not None:
1091
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1092
+
1093
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1094
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1095
+
1096
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1097
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1098
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1099
+
1100
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1101
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1102
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1103
+
1104
+ if self.q_head_dim != self.v_head_dim:
1105
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
1106
+
1107
+ if past_key_value is not None:
1108
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1109
+ key_states, value_states = past_key_value.update(
1110
+ key_states, value_states, self.layer_idx, cache_kwargs
1111
+ )
1112
+
1113
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1114
+ # to be able to avoid many of these transpose/reshape/view.
1115
+ query_states = query_states.transpose(1, 2)
1116
+ key_states = key_states.transpose(1, 2)
1117
+ value_states = value_states.transpose(1, 2)
1118
+
1119
+ dropout_rate = self.attention_dropout if self.training else 0.0
1120
+
1121
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1122
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1123
+ # cast them back in the correct dtype just to be sure everything works as expected.
1124
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1125
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1126
+
1127
+ input_dtype = query_states.dtype
1128
+ if input_dtype == torch.float32:
1129
+ # Handle the case where the model is quantized
1130
+ if hasattr(self.config, "_pre_quantization_dtype"):
1131
+ target_dtype = self.config._pre_quantization_dtype
1132
+ elif torch.is_autocast_enabled():
1133
+ target_dtype = torch.get_autocast_gpu_dtype()
1134
+ else:
1135
+ target_dtype = (
1136
+ self.q_proj.weight.dtype
1137
+ if self.q_lora_rank is None
1138
+ else self.q_a_proj.weight.dtype
1139
+ )
1140
+
1141
+ logger.warning_once(
1142
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1143
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1144
+ f" {target_dtype}."
1145
+ )
1146
+
1147
+ query_states = query_states.to(target_dtype)
1148
+ key_states = key_states.to(target_dtype)
1149
+ value_states = value_states.to(target_dtype)
1150
+
1151
+ attn_output = self._flash_attention_forward(
1152
+ query_states,
1153
+ key_states,
1154
+ value_states,
1155
+ attention_mask,
1156
+ q_len,
1157
+ dropout=dropout_rate,
1158
+ softmax_scale=self.softmax_scale,
1159
+ )
1160
+ if self.q_head_dim != self.v_head_dim:
1161
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1162
+
1163
+ attn_output = attn_output.reshape(
1164
+ bsz, q_len, self.num_heads * self.v_head_dim
1165
+ ).contiguous()
1166
+ attn_output = self.o_proj(attn_output)
1167
+
1168
+ if not output_attentions:
1169
+ attn_weights = None
1170
+
1171
+ return attn_output, attn_weights, past_key_value
1172
+
1173
+ def _flash_attention_forward(
1174
+ self,
1175
+ query_states,
1176
+ key_states,
1177
+ value_states,
1178
+ attention_mask,
1179
+ query_length,
1180
+ dropout=0.0,
1181
+ softmax_scale=None,
1182
+ ):
1183
+ """
1184
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1185
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1186
+
1187
+ Args:
1188
+ query_states (`torch.Tensor`):
1189
+ Input query states to be passed to Flash Attention API
1190
+ key_states (`torch.Tensor`):
1191
+ Input key states to be passed to Flash Attention API
1192
+ value_states (`torch.Tensor`):
1193
+ Input value states to be passed to Flash Attention API
1194
+ attention_mask (`torch.Tensor`):
1195
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1196
+ position of padding tokens and 1 for the position of non-padding tokens.
1197
+ dropout (`int`, *optional*):
1198
+ Attention dropout
1199
+ softmax_scale (`float`, *optional*):
1200
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1201
+ """
1202
+ if not self._flash_attn_uses_top_left_mask:
1203
+ causal = self.is_causal
1204
+ else:
1205
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1206
+ causal = self.is_causal and query_length != 1
1207
+
1208
+ # Contains at least one padding token in the sequence
1209
+ if attention_mask is not None:
1210
+ batch_size = query_states.shape[0]
1211
+ (
1212
+ query_states,
1213
+ key_states,
1214
+ value_states,
1215
+ indices_q,
1216
+ cu_seq_lens,
1217
+ max_seq_lens,
1218
+ ) = self._upad_input(
1219
+ query_states, key_states, value_states, attention_mask, query_length
1220
+ )
1221
+
1222
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1223
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1224
+
1225
+ attn_output_unpad = flash_attn_varlen_func(
1226
+ query_states,
1227
+ key_states,
1228
+ value_states,
1229
+ cu_seqlens_q=cu_seqlens_q,
1230
+ cu_seqlens_k=cu_seqlens_k,
1231
+ max_seqlen_q=max_seqlen_in_batch_q,
1232
+ max_seqlen_k=max_seqlen_in_batch_k,
1233
+ dropout_p=dropout,
1234
+ softmax_scale=softmax_scale,
1235
+ causal=causal,
1236
+ )
1237
+
1238
+ attn_output = pad_input(
1239
+ attn_output_unpad, indices_q, batch_size, query_length
1240
+ )
1241
+ else:
1242
+ attn_output = flash_attn_func(
1243
+ query_states,
1244
+ key_states,
1245
+ value_states,
1246
+ dropout,
1247
+ softmax_scale=softmax_scale,
1248
+ causal=causal,
1249
+ )
1250
+
1251
+ return attn_output
1252
+
1253
+ def _upad_input(
1254
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1255
+ ):
1256
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1257
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1258
+
1259
+ key_layer = index_first_axis(
1260
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1261
+ indices_k,
1262
+ )
1263
+ value_layer = index_first_axis(
1264
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1265
+ indices_k,
1266
+ )
1267
+ if query_length == kv_seq_len:
1268
+ query_layer = index_first_axis(
1269
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1270
+ indices_k,
1271
+ )
1272
+ cu_seqlens_q = cu_seqlens_k
1273
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1274
+ indices_q = indices_k
1275
+ elif query_length == 1:
1276
+ max_seqlen_in_batch_q = 1
1277
+ cu_seqlens_q = torch.arange(
1278
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1279
+ ) # There is a memcpy here, that is very bad.
1280
+ indices_q = cu_seqlens_q[:-1]
1281
+ query_layer = query_layer.squeeze(1)
1282
+ else:
1283
+ # The -q_len: slice assumes left padding.
1284
+ attention_mask = attention_mask[:, -query_length:]
1285
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1286
+ query_layer, attention_mask
1287
+ )
1288
+
1289
+ return (
1290
+ query_layer,
1291
+ key_layer,
1292
+ value_layer,
1293
+ indices_q,
1294
+ (cu_seqlens_q, cu_seqlens_k),
1295
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1296
+ )
1297
+
1298
+
1299
+ ATTENTION_CLASSES = {
1300
+ "eager": DeepseekV2Attention,
1301
+ "flash_attention_2": DeepseekV2FlashAttention2,
1302
+ }
1303
+
1304
+
1305
+ class DeepseekV2DecoderLayer(nn.Module):
1306
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1307
+ super().__init__()
1308
+ self.hidden_size = config.hidden_size
1309
+
1310
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1311
+ config=config, layer_idx=layer_idx
1312
+ )
1313
+
1314
+ self.mlp = (
1315
+ DeepseekV2MoE(config)
1316
+ if (
1317
+ config.n_routed_experts is not None
1318
+ and layer_idx >= config.first_k_dense_replace
1319
+ and layer_idx % config.moe_layer_freq == 0
1320
+ )
1321
+ else DeepseekV2MLP(config)
1322
+ )
1323
+ self.input_layernorm = DeepseekV2RMSNorm(
1324
+ config.hidden_size, eps=config.rms_norm_eps
1325
+ )
1326
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1327
+ config.hidden_size, eps=config.rms_norm_eps
1328
+ )
1329
+
1330
+ def forward(
1331
+ self,
1332
+ hidden_states: torch.Tensor,
1333
+ attention_mask: Optional[torch.Tensor] = None,
1334
+ position_ids: Optional[torch.LongTensor] = None,
1335
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1336
+ output_attentions: Optional[bool] = False,
1337
+ use_cache: Optional[bool] = False,
1338
+ **kwargs,
1339
+ ) -> Tuple[
1340
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1341
+ ]:
1342
+ """
1343
+ Args:
1344
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1345
+ attention_mask (`torch.FloatTensor`, *optional*):
1346
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1347
+ query_sequence_length, key_sequence_length)` if default attention is used.
1348
+ output_attentions (`bool`, *optional*):
1349
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1350
+ returned tensors for more detail.
1351
+ use_cache (`bool`, *optional*):
1352
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1353
+ (see `past_key_values`).
1354
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1355
+ """
1356
+ if "padding_mask" in kwargs:
1357
+ warnings.warn(
1358
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1359
+ )
1360
+ residual = hidden_states
1361
+
1362
+ hidden_states = self.input_layernorm(hidden_states)
1363
+
1364
+ # Self Attention
1365
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1366
+ hidden_states=hidden_states,
1367
+ attention_mask=attention_mask,
1368
+ position_ids=position_ids,
1369
+ past_key_value=past_key_value,
1370
+ output_attentions=output_attentions,
1371
+ use_cache=use_cache,
1372
+ **kwargs,
1373
+ )
1374
+ hidden_states = residual + hidden_states
1375
+
1376
+ # Fully Connected
1377
+ residual = hidden_states
1378
+ hidden_states = self.post_attention_layernorm(hidden_states)
1379
+ hidden_states = self.mlp(hidden_states)
1380
+ hidden_states = residual + hidden_states
1381
+
1382
+ outputs = (hidden_states,)
1383
+
1384
+ if output_attentions:
1385
+ outputs += (self_attn_weights,)
1386
+
1387
+ if use_cache:
1388
+ outputs += (present_key_value,)
1389
+
1390
+ return outputs
1391
+
1392
+
1393
+ DeepseekV2_START_DOCSTRING = r"""
1394
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1395
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1396
+ etc.)
1397
+
1398
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1399
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1400
+ and behavior.
1401
+
1402
+ Parameters:
1403
+ config ([`DeepseekV2Config`]):
1404
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1405
+ load the weights associated with the model, only the configuration. Check out the
1406
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1407
+ """
1408
+
1409
+
1410
+ @add_start_docstrings(
1411
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1412
+ DeepseekV2_START_DOCSTRING,
1413
+ )
1414
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1415
+ config_class = DeepseekV2Config
1416
+ base_model_prefix = "model"
1417
+ supports_gradient_checkpointing = True
1418
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1419
+ _skip_keys_device_placement = "past_key_values"
1420
+ _supports_flash_attn_2 = True
1421
+ _supports_cache_class = True
1422
+
1423
+ def _init_weights(self, module):
1424
+ std = self.config.initializer_range
1425
+ if isinstance(module, nn.Linear):
1426
+ module.weight.data.normal_(mean=0.0, std=std)
1427
+ if module.bias is not None:
1428
+ module.bias.data.zero_()
1429
+ elif isinstance(module, nn.Embedding):
1430
+ module.weight.data.normal_(mean=0.0, std=std)
1431
+ if module.padding_idx is not None:
1432
+ module.weight.data[module.padding_idx].zero_()
1433
+
1434
+
1435
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1436
+ Args:
1437
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1438
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1439
+ it.
1440
+
1441
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1442
+ [`PreTrainedTokenizer.__call__`] for details.
1443
+
1444
+ [What are input IDs?](../glossary#input-ids)
1445
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1446
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1447
+
1448
+ - 1 for tokens that are **not masked**,
1449
+ - 0 for tokens that are **masked**.
1450
+
1451
+ [What are attention masks?](../glossary#attention-mask)
1452
+
1453
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1454
+ [`PreTrainedTokenizer.__call__`] for details.
1455
+
1456
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1457
+ `past_key_values`).
1458
+
1459
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1460
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1461
+ information on the default strategy.
1462
+
1463
+ - 1 indicates the head is **not masked**,
1464
+ - 0 indicates the head is **masked**.
1465
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1466
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1467
+ config.n_positions - 1]`.
1468
+
1469
+ [What are position IDs?](../glossary#position-ids)
1470
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1471
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1472
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1473
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1474
+
1475
+ Two formats are allowed:
1476
+ - a [`~cache_utils.Cache`] instance;
1477
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1478
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1479
+ cache format.
1480
+
1481
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1482
+ legacy cache format will be returned.
1483
+
1484
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1485
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1486
+ of shape `(batch_size, sequence_length)`.
1487
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1488
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1489
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1490
+ model's internal embedding lookup matrix.
1491
+ use_cache (`bool`, *optional*):
1492
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1493
+ `past_key_values`).
1494
+ output_attentions (`bool`, *optional*):
1495
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1496
+ tensors for more detail.
1497
+ output_hidden_states (`bool`, *optional*):
1498
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1499
+ more detail.
1500
+ return_dict (`bool`, *optional*):
1501
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1502
+ """
1503
+
1504
+
1505
+ @add_start_docstrings(
1506
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1507
+ DeepseekV2_START_DOCSTRING,
1508
+ )
1509
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1510
+ """
1511
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1512
+
1513
+ Args:
1514
+ config: DeepseekV2Config
1515
+ """
1516
+
1517
+ def __init__(self, config: DeepseekV2Config):
1518
+ super().__init__(config)
1519
+ print("DeepseekV2Model: using densemixer")
1520
+ self.padding_idx = config.pad_token_id
1521
+ self.vocab_size = config.vocab_size
1522
+
1523
+ self.embed_tokens = nn.Embedding(
1524
+ config.vocab_size, config.hidden_size, self.padding_idx
1525
+ )
1526
+ self.layers = nn.ModuleList(
1527
+ [
1528
+ DeepseekV2DecoderLayer(config, layer_idx)
1529
+ for layer_idx in range(config.num_hidden_layers)
1530
+ ]
1531
+ )
1532
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1533
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1534
+
1535
+ self.gradient_checkpointing = False
1536
+ # Initialize weights and apply final processing
1537
+ self.post_init()
1538
+
1539
+ def get_input_embeddings(self):
1540
+ return self.embed_tokens
1541
+
1542
+ def set_input_embeddings(self, value):
1543
+ self.embed_tokens = value
1544
+
1545
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1546
+ def forward(
1547
+ self,
1548
+ input_ids: torch.LongTensor = None,
1549
+ attention_mask: Optional[torch.Tensor] = None,
1550
+ position_ids: Optional[torch.LongTensor] = None,
1551
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1552
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1553
+ use_cache: Optional[bool] = None,
1554
+ output_attentions: Optional[bool] = None,
1555
+ output_hidden_states: Optional[bool] = None,
1556
+ return_dict: Optional[bool] = None,
1557
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1558
+ output_attentions = (
1559
+ output_attentions
1560
+ if output_attentions is not None
1561
+ else self.config.output_attentions
1562
+ )
1563
+ output_hidden_states = (
1564
+ output_hidden_states
1565
+ if output_hidden_states is not None
1566
+ else self.config.output_hidden_states
1567
+ )
1568
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1569
+
1570
+ return_dict = (
1571
+ return_dict if return_dict is not None else self.config.use_return_dict
1572
+ )
1573
+
1574
+ # retrieve input_ids and inputs_embeds
1575
+ if input_ids is not None and inputs_embeds is not None:
1576
+ raise ValueError(
1577
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1578
+ )
1579
+ elif input_ids is not None:
1580
+ batch_size, seq_length = input_ids.shape[:2]
1581
+ elif inputs_embeds is not None:
1582
+ batch_size, seq_length = inputs_embeds.shape[:2]
1583
+ else:
1584
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1585
+
1586
+ if self.gradient_checkpointing and self.training:
1587
+ if use_cache:
1588
+ logger.warning_once(
1589
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1590
+ )
1591
+ use_cache = False
1592
+
1593
+ past_key_values_length = 0
1594
+ if use_cache:
1595
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1596
+ if use_legacy_cache:
1597
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1598
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1599
+
1600
+ if position_ids is None:
1601
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1602
+ position_ids = torch.arange(
1603
+ past_key_values_length,
1604
+ seq_length + past_key_values_length,
1605
+ dtype=torch.long,
1606
+ device=device,
1607
+ )
1608
+ position_ids = position_ids.unsqueeze(0)
1609
+
1610
+ if inputs_embeds is None:
1611
+ inputs_embeds = self.embed_tokens(input_ids)
1612
+
1613
+ if self._use_flash_attention_2:
1614
+ # 2d mask is passed through the layers
1615
+ attention_mask = (
1616
+ attention_mask
1617
+ if (attention_mask is not None and 0 in attention_mask)
1618
+ else None
1619
+ )
1620
+ else:
1621
+ # 4d mask is passed through the layers
1622
+ attention_mask = _prepare_4d_causal_attention_mask(
1623
+ attention_mask,
1624
+ (batch_size, seq_length),
1625
+ inputs_embeds,
1626
+ past_key_values_length,
1627
+ )
1628
+
1629
+ # embed positions
1630
+ hidden_states = inputs_embeds
1631
+
1632
+ # decoder layers
1633
+ all_hidden_states = () if output_hidden_states else None
1634
+ all_self_attns = () if output_attentions else None
1635
+ next_decoder_cache = None
1636
+
1637
+ for decoder_layer in self.layers:
1638
+ if output_hidden_states:
1639
+ all_hidden_states += (hidden_states,)
1640
+
1641
+ if self.gradient_checkpointing and self.training:
1642
+ layer_outputs = self._gradient_checkpointing_func(
1643
+ decoder_layer.__call__,
1644
+ hidden_states,
1645
+ attention_mask,
1646
+ position_ids,
1647
+ past_key_values,
1648
+ output_attentions,
1649
+ use_cache,
1650
+ )
1651
+ else:
1652
+ layer_outputs = decoder_layer(
1653
+ hidden_states,
1654
+ attention_mask=attention_mask,
1655
+ position_ids=position_ids,
1656
+ past_key_value=past_key_values,
1657
+ output_attentions=output_attentions,
1658
+ use_cache=use_cache,
1659
+ )
1660
+
1661
+ hidden_states = layer_outputs[0]
1662
+
1663
+ if use_cache:
1664
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1665
+
1666
+ if output_attentions:
1667
+ all_self_attns += (layer_outputs[1],)
1668
+
1669
+ hidden_states = self.norm(hidden_states)
1670
+
1671
+ # add hidden states from the last decoder layer
1672
+ if output_hidden_states:
1673
+ all_hidden_states += (hidden_states,)
1674
+
1675
+ next_cache = None
1676
+ if use_cache:
1677
+ next_cache = (
1678
+ next_decoder_cache.to_legacy_cache()
1679
+ if use_legacy_cache
1680
+ else next_decoder_cache
1681
+ )
1682
+ if not return_dict:
1683
+ return tuple(
1684
+ v
1685
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1686
+ if v is not None
1687
+ )
1688
+ return BaseModelOutputWithPast(
1689
+ last_hidden_state=hidden_states,
1690
+ past_key_values=next_cache,
1691
+ hidden_states=all_hidden_states,
1692
+ attentions=all_self_attns,
1693
+ )
1694
+
1695
+
1696
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1697
+ _tied_weights_keys = ["lm_head.weight"]
1698
+
1699
+ def __init__(self, config):
1700
+ super().__init__(config)
1701
+ self.model = DeepseekV2Model(config)
1702
+ self.vocab_size = config.vocab_size
1703
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1704
+
1705
+ # Initialize weights and apply final processing
1706
+ self.post_init()
1707
+
1708
+ def get_input_embeddings(self):
1709
+ return self.model.embed_tokens
1710
+
1711
+ def set_input_embeddings(self, value):
1712
+ self.model.embed_tokens = value
1713
+
1714
+ def get_output_embeddings(self):
1715
+ return self.lm_head
1716
+
1717
+ def set_output_embeddings(self, new_embeddings):
1718
+ self.lm_head = new_embeddings
1719
+
1720
+ def set_decoder(self, decoder):
1721
+ self.model = decoder
1722
+
1723
+ def get_decoder(self):
1724
+ return self.model
1725
+
1726
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1727
+ @replace_return_docstrings(
1728
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1729
+ )
1730
+ def forward(
1731
+ self,
1732
+ input_ids: torch.LongTensor = None,
1733
+ attention_mask: Optional[torch.Tensor] = None,
1734
+ position_ids: Optional[torch.LongTensor] = None,
1735
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1736
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1737
+ labels: Optional[torch.LongTensor] = None,
1738
+ use_cache: Optional[bool] = None,
1739
+ output_attentions: Optional[bool] = None,
1740
+ output_hidden_states: Optional[bool] = None,
1741
+ return_dict: Optional[bool] = None,
1742
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1743
+ r"""
1744
+ Args:
1745
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1746
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1747
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1748
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1749
+
1750
+ Returns:
1751
+
1752
+ Example:
1753
+
1754
+ ```python
1755
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1756
+
1757
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1758
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1759
+
1760
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1761
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1762
+
1763
+ >>> # Generate
1764
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1765
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1766
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1767
+ ```"""
1768
+ output_attentions = (
1769
+ output_attentions
1770
+ if output_attentions is not None
1771
+ else self.config.output_attentions
1772
+ )
1773
+ output_hidden_states = (
1774
+ output_hidden_states
1775
+ if output_hidden_states is not None
1776
+ else self.config.output_hidden_states
1777
+ )
1778
+ return_dict = (
1779
+ return_dict if return_dict is not None else self.config.use_return_dict
1780
+ )
1781
+
1782
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1783
+ outputs = self.model(
1784
+ input_ids=input_ids,
1785
+ attention_mask=attention_mask,
1786
+ position_ids=position_ids,
1787
+ past_key_values=past_key_values,
1788
+ inputs_embeds=inputs_embeds,
1789
+ use_cache=use_cache,
1790
+ output_attentions=output_attentions,
1791
+ output_hidden_states=output_hidden_states,
1792
+ return_dict=return_dict,
1793
+ )
1794
+
1795
+ hidden_states = outputs[0]
1796
+ logits = self.lm_head(hidden_states)
1797
+ logits = logits.float()
1798
+
1799
+ loss = None
1800
+ if labels is not None:
1801
+ # Shift so that tokens < n predict n
1802
+ shift_logits = logits[..., :-1, :].contiguous()
1803
+ shift_labels = labels[..., 1:].contiguous()
1804
+ # Flatten the tokens
1805
+ loss_fct = CrossEntropyLoss()
1806
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1807
+ shift_labels = shift_labels.view(-1)
1808
+ # Enable model parallelism
1809
+ shift_labels = shift_labels.to(shift_logits.device)
1810
+ loss = loss_fct(shift_logits, shift_labels)
1811
+
1812
+ if not return_dict:
1813
+ output = (logits,) + outputs[1:]
1814
+ return (loss,) + output if loss is not None else output
1815
+
1816
+ return CausalLMOutputWithPast(
1817
+ loss=loss,
1818
+ logits=logits,
1819
+ past_key_values=outputs.past_key_values,
1820
+ hidden_states=outputs.hidden_states,
1821
+ attentions=outputs.attentions,
1822
+ )
1823
+
1824
+ def prepare_inputs_for_generation(
1825
+ self,
1826
+ input_ids,
1827
+ past_key_values=None,
1828
+ attention_mask=None,
1829
+ inputs_embeds=None,
1830
+ **kwargs,
1831
+ ):
1832
+ if past_key_values is not None:
1833
+ if isinstance(past_key_values, Cache):
1834
+ cache_length = past_key_values.get_seq_length()
1835
+ past_length = past_key_values.seen_tokens
1836
+ max_cache_length = past_key_values.get_max_length()
1837
+ else:
1838
+ cache_length = past_length = past_key_values[0][0].shape[2]
1839
+ max_cache_length = None
1840
+
1841
+ # Keep only the unprocessed tokens:
1842
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1843
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1844
+ # input)
1845
+ if (
1846
+ attention_mask is not None
1847
+ and attention_mask.shape[1] > input_ids.shape[1]
1848
+ ):
1849
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1850
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1851
+ # input_ids based on the past_length.
1852
+ elif past_length < input_ids.shape[1]:
1853
+ input_ids = input_ids[:, past_length:]
1854
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1855
+
1856
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1857
+ if (
1858
+ max_cache_length is not None
1859
+ and attention_mask is not None
1860
+ and cache_length + input_ids.shape[1] > max_cache_length
1861
+ ):
1862
+ attention_mask = attention_mask[:, -max_cache_length:]
1863
+
1864
+ position_ids = kwargs.get("position_ids", None)
1865
+ if attention_mask is not None and position_ids is None:
1866
+ # create position_ids on the fly for batch generation
1867
+ position_ids = attention_mask.long().cumsum(-1) - 1
1868
+ position_ids.masked_fill_(attention_mask == 0, 1)
1869
+ if past_key_values:
1870
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1871
+
1872
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1873
+ if inputs_embeds is not None and past_key_values is None:
1874
+ model_inputs = {"inputs_embeds": inputs_embeds}
1875
+ else:
1876
+ model_inputs = {"input_ids": input_ids}
1877
+
1878
+ model_inputs.update(
1879
+ {
1880
+ "position_ids": position_ids,
1881
+ "past_key_values": past_key_values,
1882
+ "use_cache": kwargs.get("use_cache"),
1883
+ "attention_mask": attention_mask,
1884
+ }
1885
+ )
1886
+ return model_inputs
1887
+
1888
+ @staticmethod
1889
+ def _reorder_cache(past_key_values, beam_idx):
1890
+ reordered_past = ()
1891
+ for layer_past in past_key_values:
1892
+ reordered_past += (
1893
+ tuple(
1894
+ past_state.index_select(0, beam_idx.to(past_state.device))
1895
+ for past_state in layer_past
1896
+ ),
1897
+ )
1898
+ return reordered_past
1899
+
1900
+
1901
+ @add_start_docstrings(
1902
+ """
1903
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1904
+
1905
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1906
+ (e.g. GPT-2) do.
1907
+
1908
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1909
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1910
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1911
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1912
+ each row of the batch).
1913
+ """,
1914
+ DeepseekV2_START_DOCSTRING,
1915
+ )
1916
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1917
+ def __init__(self, config):
1918
+ super().__init__(config)
1919
+ self.num_labels = config.num_labels
1920
+ self.model = DeepseekV2Model(config)
1921
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1922
+
1923
+ # Initialize weights and apply final processing
1924
+ self.post_init()
1925
+
1926
+ def get_input_embeddings(self):
1927
+ return self.model.embed_tokens
1928
+
1929
+ def set_input_embeddings(self, value):
1930
+ self.model.embed_tokens = value
1931
+
1932
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1933
+ def forward(
1934
+ self,
1935
+ input_ids: torch.LongTensor = None,
1936
+ attention_mask: Optional[torch.Tensor] = None,
1937
+ position_ids: Optional[torch.LongTensor] = None,
1938
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1939
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1940
+ labels: Optional[torch.LongTensor] = None,
1941
+ use_cache: Optional[bool] = None,
1942
+ output_attentions: Optional[bool] = None,
1943
+ output_hidden_states: Optional[bool] = None,
1944
+ return_dict: Optional[bool] = None,
1945
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1946
+ r"""
1947
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1948
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1949
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1950
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1951
+ """
1952
+ return_dict = (
1953
+ return_dict if return_dict is not None else self.config.use_return_dict
1954
+ )
1955
+
1956
+ transformer_outputs = self.model(
1957
+ input_ids,
1958
+ attention_mask=attention_mask,
1959
+ position_ids=position_ids,
1960
+ past_key_values=past_key_values,
1961
+ inputs_embeds=inputs_embeds,
1962
+ use_cache=use_cache,
1963
+ output_attentions=output_attentions,
1964
+ output_hidden_states=output_hidden_states,
1965
+ return_dict=return_dict,
1966
+ )
1967
+ hidden_states = transformer_outputs[0]
1968
+ logits = self.score(hidden_states)
1969
+
1970
+ if input_ids is not None:
1971
+ batch_size = input_ids.shape[0]
1972
+ else:
1973
+ batch_size = inputs_embeds.shape[0]
1974
+
1975
+ if self.config.pad_token_id is None and batch_size != 1:
1976
+ raise ValueError(
1977
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1978
+ )
1979
+ if self.config.pad_token_id is None:
1980
+ sequence_lengths = -1
1981
+ else:
1982
+ if input_ids is not None:
1983
+ sequence_lengths = (
1984
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1985
+ ).to(logits.device)
1986
+ else:
1987
+ sequence_lengths = -1
1988
+
1989
+ pooled_logits = logits[
1990
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1991
+ ]
1992
+
1993
+ loss = None
1994
+ if labels is not None:
1995
+ labels = labels.to(logits.device)
1996
+ if self.config.problem_type is None:
1997
+ if self.num_labels == 1:
1998
+ self.config.problem_type = "regression"
1999
+ elif self.num_labels > 1 and (
2000
+ labels.dtype == torch.long or labels.dtype == torch.int
2001
+ ):
2002
+ self.config.problem_type = "single_label_classification"
2003
+ else:
2004
+ self.config.problem_type = "multi_label_classification"
2005
+
2006
+ if self.config.problem_type == "regression":
2007
+ loss_fct = MSELoss()
2008
+ if self.num_labels == 1:
2009
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
2010
+ else:
2011
+ loss = loss_fct(pooled_logits, labels)
2012
+ elif self.config.problem_type == "single_label_classification":
2013
+ loss_fct = CrossEntropyLoss()
2014
+ loss = loss_fct(
2015
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
2016
+ )
2017
+ elif self.config.problem_type == "multi_label_classification":
2018
+ loss_fct = BCEWithLogitsLoss()
2019
+ loss = loss_fct(pooled_logits, labels)
2020
+ if not return_dict:
2021
+ output = (pooled_logits,) + transformer_outputs[1:]
2022
+ return ((loss,) + output) if loss is not None else output
2023
+
2024
+ return SequenceClassifierOutputWithPast(
2025
+ loss=loss,
2026
+ logits=pooled_logits,
2027
+ past_key_values=transformer_outputs.past_key_values,
2028
+ hidden_states=transformer_outputs.hidden_states,
2029
+ attentions=transformer_outputs.attentions,
2030
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ }
22
+ },
23
+ "bos_token": "<|begin▁of▁sentence|>",
24
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
25
+ "clean_up_tokenization_spaces": false,
26
+ "eos_token": "<|end▁of▁sentence|>",
27
+ "extra_special_tokens": {},
28
+ "legacy": true,
29
+ "model_max_length": 16384,
30
+ "pad_token": "<|end▁of▁sentence|>",
31
+ "padding_side": "right",
32
+ "sp_model_kwargs": {},
33
+ "split_special_tokens": false,
34
+ "tokenizer_class": "LlamaTokenizerFast",
35
+ "unk_token": null,
36
+ "use_default_system_prompt": false
37
+ }
trainer_state.json ADDED
@@ -0,0 +1,2491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 351,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.008547008547008548,
14
+ "grad_norm": 5.000201194667757,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.0148,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.017094017094017096,
21
+ "grad_norm": 4.553619244653335,
22
+ "learning_rate": 2.1276595744680852e-07,
23
+ "loss": 0.9335,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.02564102564102564,
28
+ "grad_norm": 5.2025726843321864,
29
+ "learning_rate": 4.2553191489361704e-07,
30
+ "loss": 1.09,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.03418803418803419,
35
+ "grad_norm": 5.547471309289295,
36
+ "learning_rate": 6.382978723404255e-07,
37
+ "loss": 1.118,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.042735042735042736,
42
+ "grad_norm": 5.429011231183887,
43
+ "learning_rate": 8.510638297872341e-07,
44
+ "loss": 1.046,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.05128205128205128,
49
+ "grad_norm": 5.143141788493172,
50
+ "learning_rate": 1.0638297872340427e-06,
51
+ "loss": 0.9892,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.05982905982905983,
56
+ "grad_norm": 5.103143984506411,
57
+ "learning_rate": 1.276595744680851e-06,
58
+ "loss": 0.988,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.06837606837606838,
63
+ "grad_norm": 4.532297415969434,
64
+ "learning_rate": 1.4893617021276596e-06,
65
+ "loss": 0.9533,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.07692307692307693,
70
+ "grad_norm": 4.719461465878973,
71
+ "learning_rate": 1.7021276595744682e-06,
72
+ "loss": 0.9846,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.08547008547008547,
77
+ "grad_norm": 4.886449233552686,
78
+ "learning_rate": 1.9148936170212767e-06,
79
+ "loss": 0.9972,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.09401709401709402,
84
+ "grad_norm": 3.9756063569662836,
85
+ "learning_rate": 2.1276595744680853e-06,
86
+ "loss": 0.9271,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.10256410256410256,
91
+ "grad_norm": 3.6115294528308737,
92
+ "learning_rate": 2.340425531914894e-06,
93
+ "loss": 0.9314,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.1111111111111111,
98
+ "grad_norm": 3.95062221359107,
99
+ "learning_rate": 2.553191489361702e-06,
100
+ "loss": 0.9224,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.11965811965811966,
105
+ "grad_norm": 3.6020474394614355,
106
+ "learning_rate": 2.765957446808511e-06,
107
+ "loss": 0.8217,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.1282051282051282,
112
+ "grad_norm": 3.1675369823021544,
113
+ "learning_rate": 2.978723404255319e-06,
114
+ "loss": 0.7474,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.13675213675213677,
119
+ "grad_norm": 3.4027856540052954,
120
+ "learning_rate": 3.191489361702128e-06,
121
+ "loss": 0.7058,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.1452991452991453,
126
+ "grad_norm": 3.2092110811100807,
127
+ "learning_rate": 3.4042553191489363e-06,
128
+ "loss": 0.7066,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.15384615384615385,
133
+ "grad_norm": 3.3837232484963167,
134
+ "learning_rate": 3.6170212765957453e-06,
135
+ "loss": 0.7442,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.1623931623931624,
140
+ "grad_norm": 3.566285592843641,
141
+ "learning_rate": 3.8297872340425535e-06,
142
+ "loss": 0.6024,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.17094017094017094,
147
+ "grad_norm": 3.8266027576988386,
148
+ "learning_rate": 4.042553191489362e-06,
149
+ "loss": 0.5398,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.1794871794871795,
154
+ "grad_norm": 2.2657952956960936,
155
+ "learning_rate": 4.255319148936171e-06,
156
+ "loss": 0.5643,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.18803418803418803,
161
+ "grad_norm": 1.9644037313787919,
162
+ "learning_rate": 4.468085106382979e-06,
163
+ "loss": 0.5542,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.19658119658119658,
168
+ "grad_norm": 1.9245732015689416,
169
+ "learning_rate": 4.680851063829788e-06,
170
+ "loss": 0.5323,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.20512820512820512,
175
+ "grad_norm": 1.5843848692897562,
176
+ "learning_rate": 4.893617021276596e-06,
177
+ "loss": 0.4884,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.21367521367521367,
182
+ "grad_norm": 1.5705361172860144,
183
+ "learning_rate": 5.106382978723404e-06,
184
+ "loss": 0.5031,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.2222222222222222,
189
+ "grad_norm": 1.408768419889516,
190
+ "learning_rate": 5.319148936170213e-06,
191
+ "loss": 0.509,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.23076923076923078,
196
+ "grad_norm": 1.367146426063194,
197
+ "learning_rate": 5.531914893617022e-06,
198
+ "loss": 0.4943,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.23931623931623933,
203
+ "grad_norm": 1.3938494527960905,
204
+ "learning_rate": 5.744680851063831e-06,
205
+ "loss": 0.4518,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.24786324786324787,
210
+ "grad_norm": 1.5985642734682453,
211
+ "learning_rate": 5.957446808510638e-06,
212
+ "loss": 0.4953,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.2564102564102564,
217
+ "grad_norm": 1.343839505892132,
218
+ "learning_rate": 6.170212765957447e-06,
219
+ "loss": 0.4775,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.26495726495726496,
224
+ "grad_norm": 1.1853048978003005,
225
+ "learning_rate": 6.382978723404256e-06,
226
+ "loss": 0.4606,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.27350427350427353,
231
+ "grad_norm": 1.1985247979159896,
232
+ "learning_rate": 6.595744680851064e-06,
233
+ "loss": 0.4762,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.28205128205128205,
238
+ "grad_norm": 1.237451343485384,
239
+ "learning_rate": 6.808510638297873e-06,
240
+ "loss": 0.4838,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.2905982905982906,
245
+ "grad_norm": 1.121786595500156,
246
+ "learning_rate": 7.021276595744682e-06,
247
+ "loss": 0.4534,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.29914529914529914,
252
+ "grad_norm": 1.1869718474915711,
253
+ "learning_rate": 7.234042553191491e-06,
254
+ "loss": 0.4428,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.3076923076923077,
259
+ "grad_norm": 1.1529254008542718,
260
+ "learning_rate": 7.446808510638298e-06,
261
+ "loss": 0.5016,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.3162393162393162,
266
+ "grad_norm": 1.1702663012816394,
267
+ "learning_rate": 7.659574468085107e-06,
268
+ "loss": 0.4343,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.3247863247863248,
273
+ "grad_norm": 1.1125660212336026,
274
+ "learning_rate": 7.872340425531916e-06,
275
+ "loss": 0.4284,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.3333333333333333,
280
+ "grad_norm": 1.1240752168855772,
281
+ "learning_rate": 8.085106382978723e-06,
282
+ "loss": 0.4182,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.3418803418803419,
287
+ "grad_norm": 1.121419284806237,
288
+ "learning_rate": 8.297872340425532e-06,
289
+ "loss": 0.458,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.3504273504273504,
294
+ "grad_norm": 1.1143819867497298,
295
+ "learning_rate": 8.510638297872341e-06,
296
+ "loss": 0.45,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.358974358974359,
301
+ "grad_norm": 1.1078268588286275,
302
+ "learning_rate": 8.72340425531915e-06,
303
+ "loss": 0.4322,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.36752136752136755,
308
+ "grad_norm": 1.1854005508036922,
309
+ "learning_rate": 8.936170212765958e-06,
310
+ "loss": 0.4323,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.37606837606837606,
315
+ "grad_norm": 1.174625253101526,
316
+ "learning_rate": 9.148936170212767e-06,
317
+ "loss": 0.4517,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.38461538461538464,
322
+ "grad_norm": 1.2148669994783647,
323
+ "learning_rate": 9.361702127659576e-06,
324
+ "loss": 0.4144,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.39316239316239315,
329
+ "grad_norm": 1.0834050202141576,
330
+ "learning_rate": 9.574468085106385e-06,
331
+ "loss": 0.4087,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.4017094017094017,
336
+ "grad_norm": 1.0312981005384125,
337
+ "learning_rate": 9.787234042553192e-06,
338
+ "loss": 0.4014,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.41025641025641024,
343
+ "grad_norm": 1.0991847956199,
344
+ "learning_rate": 1e-05,
345
+ "loss": 0.4231,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.4188034188034188,
350
+ "grad_norm": 1.0497486413956238,
351
+ "learning_rate": 9.999860789001947e-06,
352
+ "loss": 0.4483,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.42735042735042733,
357
+ "grad_norm": 1.191941679054524,
358
+ "learning_rate": 9.999443163759669e-06,
359
+ "loss": 0.4453,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.4358974358974359,
364
+ "grad_norm": 1.138955899116098,
365
+ "learning_rate": 9.998747147528375e-06,
366
+ "loss": 0.4462,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.4444444444444444,
371
+ "grad_norm": 1.0119062091062931,
372
+ "learning_rate": 9.997772779065312e-06,
373
+ "loss": 0.3989,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.452991452991453,
378
+ "grad_norm": 1.0835845087837552,
379
+ "learning_rate": 9.996520112627602e-06,
380
+ "loss": 0.4095,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.46153846153846156,
385
+ "grad_norm": 1.148830281621877,
386
+ "learning_rate": 9.994989217969224e-06,
387
+ "loss": 0.4638,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.4700854700854701,
392
+ "grad_norm": 1.1087544758875711,
393
+ "learning_rate": 9.993180180337126e-06,
394
+ "loss": 0.3991,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.47863247863247865,
399
+ "grad_norm": 1.0719394821426298,
400
+ "learning_rate": 9.991093100466482e-06,
401
+ "loss": 0.4079,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.48717948717948717,
406
+ "grad_norm": 1.1334620383185467,
407
+ "learning_rate": 9.988728094575082e-06,
408
+ "loss": 0.4275,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.49572649572649574,
413
+ "grad_norm": 1.086630981335899,
414
+ "learning_rate": 9.986085294356858e-06,
415
+ "loss": 0.431,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.5042735042735043,
420
+ "grad_norm": 1.0905888189048418,
421
+ "learning_rate": 9.983164846974549e-06,
422
+ "loss": 0.4128,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.5128205128205128,
427
+ "grad_norm": 1.16978894928796,
428
+ "learning_rate": 9.979966915051517e-06,
429
+ "loss": 0.4169,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.5213675213675214,
434
+ "grad_norm": 1.174126314027139,
435
+ "learning_rate": 9.976491676662679e-06,
436
+ "loss": 0.4608,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.5299145299145299,
441
+ "grad_norm": 1.1150440735360172,
442
+ "learning_rate": 9.972739325324596e-06,
443
+ "loss": 0.4399,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.5384615384615384,
448
+ "grad_norm": 1.078427844354108,
449
+ "learning_rate": 9.968710069984699e-06,
450
+ "loss": 0.3941,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.5470085470085471,
455
+ "grad_norm": 1.0461054161947163,
456
+ "learning_rate": 9.964404135009649e-06,
457
+ "loss": 0.4102,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.5555555555555556,
462
+ "grad_norm": 1.095126986939366,
463
+ "learning_rate": 9.959821760172849e-06,
464
+ "loss": 0.3928,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.5641025641025641,
469
+ "grad_norm": 1.0575368605559266,
470
+ "learning_rate": 9.95496320064109e-06,
471
+ "loss": 0.4024,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.5726495726495726,
476
+ "grad_norm": 1.0944807100090737,
477
+ "learning_rate": 9.94982872696034e-06,
478
+ "loss": 0.4213,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.5811965811965812,
483
+ "grad_norm": 1.0040621806899572,
484
+ "learning_rate": 9.94441862504068e-06,
485
+ "loss": 0.4051,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.5897435897435898,
490
+ "grad_norm": 1.1735920693175566,
491
+ "learning_rate": 9.938733196140386e-06,
492
+ "loss": 0.4143,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.5982905982905983,
497
+ "grad_norm": 1.1674632833586573,
498
+ "learning_rate": 9.932772756849152e-06,
499
+ "loss": 0.3902,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.6068376068376068,
504
+ "grad_norm": 1.1627757841084903,
505
+ "learning_rate": 9.926537639070457e-06,
506
+ "loss": 0.4183,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.6153846153846154,
511
+ "grad_norm": 1.01945513131564,
512
+ "learning_rate": 9.92002819000309e-06,
513
+ "loss": 0.3786,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.6239316239316239,
518
+ "grad_norm": 1.0049104542951017,
519
+ "learning_rate": 9.913244772121811e-06,
520
+ "loss": 0.3974,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.6324786324786325,
525
+ "grad_norm": 1.0312700019705312,
526
+ "learning_rate": 9.90618776315717e-06,
527
+ "loss": 0.4154,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.6410256410256411,
532
+ "grad_norm": 1.4096847118584448,
533
+ "learning_rate": 9.898857556074469e-06,
534
+ "loss": 0.3675,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.6495726495726496,
539
+ "grad_norm": 1.0483493517766076,
540
+ "learning_rate": 9.891254559051886e-06,
541
+ "loss": 0.4021,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.6581196581196581,
546
+ "grad_norm": 1.1029965305618874,
547
+ "learning_rate": 9.883379195457747e-06,
548
+ "loss": 0.4236,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.6666666666666666,
553
+ "grad_norm": 1.0646150700268031,
554
+ "learning_rate": 9.875231903826936e-06,
555
+ "loss": 0.4208,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.6752136752136753,
560
+ "grad_norm": 1.0210009444930273,
561
+ "learning_rate": 9.8668131378365e-06,
562
+ "loss": 0.3953,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.6837606837606838,
567
+ "grad_norm": 1.021820246971344,
568
+ "learning_rate": 9.858123366280358e-06,
569
+ "loss": 0.426,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.6923076923076923,
574
+ "grad_norm": 1.0119877252273766,
575
+ "learning_rate": 9.849163073043223e-06,
576
+ "loss": 0.3813,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.7008547008547008,
581
+ "grad_norm": 1.0079125422598045,
582
+ "learning_rate": 9.83993275707364e-06,
583
+ "loss": 0.4026,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.7094017094017094,
588
+ "grad_norm": 1.0880725672936133,
589
+ "learning_rate": 9.830432932356207e-06,
590
+ "loss": 0.3711,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.717948717948718,
595
+ "grad_norm": 0.9867725017004677,
596
+ "learning_rate": 9.820664127882958e-06,
597
+ "loss": 0.4107,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.7264957264957265,
602
+ "grad_norm": 1.0173347037451843,
603
+ "learning_rate": 9.8106268876239e-06,
604
+ "loss": 0.3994,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.7350427350427351,
609
+ "grad_norm": 1.006069526819603,
610
+ "learning_rate": 9.800321770496726e-06,
611
+ "loss": 0.3849,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.7435897435897436,
616
+ "grad_norm": 1.00629856552949,
617
+ "learning_rate": 9.789749350335693e-06,
618
+ "loss": 0.4202,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.7521367521367521,
623
+ "grad_norm": 0.9192152819685229,
624
+ "learning_rate": 9.778910215859666e-06,
625
+ "loss": 0.3625,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.7606837606837606,
630
+ "grad_norm": 1.0300081865237987,
631
+ "learning_rate": 9.767804970639338e-06,
632
+ "loss": 0.3915,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.7692307692307693,
637
+ "grad_norm": 0.8888986185383759,
638
+ "learning_rate": 9.756434233063616e-06,
639
+ "loss": 0.3644,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.7777777777777778,
644
+ "grad_norm": 0.9863916054397147,
645
+ "learning_rate": 9.744798636305189e-06,
646
+ "loss": 0.3876,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.7863247863247863,
651
+ "grad_norm": 0.9456580024202502,
652
+ "learning_rate": 9.732898828285273e-06,
653
+ "loss": 0.3806,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.7948717948717948,
658
+ "grad_norm": 0.9994253554059315,
659
+ "learning_rate": 9.72073547163753e-06,
660
+ "loss": 0.4222,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.8034188034188035,
665
+ "grad_norm": 1.13909860677196,
666
+ "learning_rate": 9.708309243671167e-06,
667
+ "loss": 0.4016,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.811965811965812,
672
+ "grad_norm": 1.0930486357722262,
673
+ "learning_rate": 9.695620836333219e-06,
674
+ "loss": 0.4082,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.8205128205128205,
679
+ "grad_norm": 0.9576110992320139,
680
+ "learning_rate": 9.68267095617003e-06,
681
+ "loss": 0.3872,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.8290598290598291,
686
+ "grad_norm": 1.2947513219359283,
687
+ "learning_rate": 9.669460324287899e-06,
688
+ "loss": 0.4502,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.8376068376068376,
693
+ "grad_norm": 1.0389791981970942,
694
+ "learning_rate": 9.655989676312918e-06,
695
+ "loss": 0.3509,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.8461538461538461,
700
+ "grad_norm": 1.0629554828032584,
701
+ "learning_rate": 9.642259762350034e-06,
702
+ "loss": 0.4139,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.8547008547008547,
707
+ "grad_norm": 1.1762884885720055,
708
+ "learning_rate": 9.628271346941252e-06,
709
+ "loss": 0.3955,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.8632478632478633,
714
+ "grad_norm": 0.9653157874998826,
715
+ "learning_rate": 9.614025209023084e-06,
716
+ "loss": 0.3794,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.8717948717948718,
721
+ "grad_norm": 1.024351198733931,
722
+ "learning_rate": 9.59952214188316e-06,
723
+ "loss": 0.3967,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.8803418803418803,
728
+ "grad_norm": 1.0006816380075654,
729
+ "learning_rate": 9.58476295311606e-06,
730
+ "loss": 0.374,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.8888888888888888,
735
+ "grad_norm": 1.155126565973536,
736
+ "learning_rate": 9.569748464578343e-06,
737
+ "loss": 0.4087,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.8974358974358975,
742
+ "grad_norm": 0.9698857048135491,
743
+ "learning_rate": 9.554479512342785e-06,
744
+ "loss": 0.3853,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.905982905982906,
749
+ "grad_norm": 1.0117208923595893,
750
+ "learning_rate": 9.538956946651816e-06,
751
+ "loss": 0.4131,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.9145299145299145,
756
+ "grad_norm": 0.9931990490031021,
757
+ "learning_rate": 9.52318163187018e-06,
758
+ "loss": 0.3885,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.9230769230769231,
763
+ "grad_norm": 1.0849525275300227,
764
+ "learning_rate": 9.507154446436806e-06,
765
+ "loss": 0.4106,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.9316239316239316,
770
+ "grad_norm": 0.9957238660095532,
771
+ "learning_rate": 9.490876282815884e-06,
772
+ "loss": 0.381,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.9401709401709402,
777
+ "grad_norm": 0.9682321750218811,
778
+ "learning_rate": 9.474348047447177e-06,
779
+ "loss": 0.39,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.9487179487179487,
784
+ "grad_norm": 0.8985303905429384,
785
+ "learning_rate": 9.457570660695542e-06,
786
+ "loss": 0.3875,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.9572649572649573,
791
+ "grad_norm": 0.9866084795766771,
792
+ "learning_rate": 9.440545056799677e-06,
793
+ "loss": 0.3672,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.9658119658119658,
798
+ "grad_norm": 0.9215988731633166,
799
+ "learning_rate": 9.423272183820109e-06,
800
+ "loss": 0.3562,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.9743589743589743,
805
+ "grad_norm": 0.9288674476481529,
806
+ "learning_rate": 9.405753003586396e-06,
807
+ "loss": 0.3652,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.9829059829059829,
812
+ "grad_norm": 1.017966831812477,
813
+ "learning_rate": 9.387988491643558e-06,
814
+ "loss": 0.4042,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.9914529914529915,
819
+ "grad_norm": 1.0281455383446965,
820
+ "learning_rate": 9.369979637197774e-06,
821
+ "loss": 0.3945,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 1.0,
826
+ "grad_norm": 0.9571454704015322,
827
+ "learning_rate": 9.351727443061284e-06,
828
+ "loss": 0.3852,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 1.0085470085470085,
833
+ "grad_norm": 0.9266871031690506,
834
+ "learning_rate": 9.33323292559655e-06,
835
+ "loss": 0.3153,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 1.017094017094017,
840
+ "grad_norm": 0.8745036746915139,
841
+ "learning_rate": 9.31449711465967e-06,
842
+ "loss": 0.3117,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 1.0256410256410255,
847
+ "grad_norm": 0.8482296667448963,
848
+ "learning_rate": 9.29552105354302e-06,
849
+ "loss": 0.3079,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 1.0341880341880343,
854
+ "grad_norm": 0.8411994115333025,
855
+ "learning_rate": 9.27630579891716e-06,
856
+ "loss": 0.2959,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 1.0427350427350428,
861
+ "grad_norm": 0.8391738206365779,
862
+ "learning_rate": 9.256852420771999e-06,
863
+ "loss": 0.2837,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 1.0512820512820513,
868
+ "grad_norm": 0.8815879789228052,
869
+ "learning_rate": 9.237162002357214e-06,
870
+ "loss": 0.28,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 1.0598290598290598,
875
+ "grad_norm": 1.0350428789005957,
876
+ "learning_rate": 9.217235640121927e-06,
877
+ "loss": 0.2994,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 1.0683760683760684,
882
+ "grad_norm": 1.0854352704500956,
883
+ "learning_rate": 9.197074443653643e-06,
884
+ "loss": 0.3179,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 1.0769230769230769,
889
+ "grad_norm": 1.0028480692303414,
890
+ "learning_rate": 9.176679535616477e-06,
891
+ "loss": 0.316,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 1.0854700854700854,
896
+ "grad_norm": 1.0303844180092128,
897
+ "learning_rate": 9.156052051688633e-06,
898
+ "loss": 0.2885,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 1.0940170940170941,
903
+ "grad_norm": 1.0216951652794686,
904
+ "learning_rate": 9.135193140499155e-06,
905
+ "loss": 0.3144,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 1.1025641025641026,
910
+ "grad_norm": 0.8725973849729337,
911
+ "learning_rate": 9.114103963563986e-06,
912
+ "loss": 0.274,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 1.1111111111111112,
917
+ "grad_norm": 0.9873615101301011,
918
+ "learning_rate": 9.092785695221271e-06,
919
+ "loss": 0.308,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 1.1196581196581197,
924
+ "grad_norm": 0.9999161033044182,
925
+ "learning_rate": 9.071239522565978e-06,
926
+ "loss": 0.3129,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 1.1282051282051282,
931
+ "grad_norm": 0.9386573931483712,
932
+ "learning_rate": 9.049466645383785e-06,
933
+ "loss": 0.2693,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 1.1367521367521367,
938
+ "grad_norm": 0.9980094788357861,
939
+ "learning_rate": 9.027468276084274e-06,
940
+ "loss": 0.3186,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 1.1452991452991452,
945
+ "grad_norm": 0.9390751988491651,
946
+ "learning_rate": 9.00524563963343e-06,
947
+ "loss": 0.2985,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 1.1538461538461537,
952
+ "grad_norm": 1.03545783987269,
953
+ "learning_rate": 8.982799973485407e-06,
954
+ "loss": 0.2833,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 1.1623931623931625,
959
+ "grad_norm": 1.024107461540865,
960
+ "learning_rate": 8.960132527513642e-06,
961
+ "loss": 0.2453,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 1.170940170940171,
966
+ "grad_norm": 1.3444850160966515,
967
+ "learning_rate": 8.937244563941248e-06,
968
+ "loss": 0.2503,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 1.1794871794871795,
973
+ "grad_norm": 1.0282281707799192,
974
+ "learning_rate": 8.914137357270723e-06,
975
+ "loss": 0.2597,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 1.188034188034188,
980
+ "grad_norm": 1.0791593285230392,
981
+ "learning_rate": 8.890812194212987e-06,
982
+ "loss": 0.2876,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 1.1965811965811965,
987
+ "grad_norm": 1.1587216473989226,
988
+ "learning_rate": 8.867270373615735e-06,
989
+ "loss": 0.314,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 1.205128205128205,
994
+ "grad_norm": 1.1302687975127939,
995
+ "learning_rate": 8.8435132063911e-06,
996
+ "loss": 0.2714,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 1.2136752136752136,
1001
+ "grad_norm": 1.0317148046622857,
1002
+ "learning_rate": 8.81954201544267e-06,
1003
+ "loss": 0.2756,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 1.2222222222222223,
1008
+ "grad_norm": 1.1000105834749634,
1009
+ "learning_rate": 8.79535813559181e-06,
1010
+ "loss": 0.3188,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 1.2307692307692308,
1015
+ "grad_norm": 1.036205595694295,
1016
+ "learning_rate": 8.77096291350334e-06,
1017
+ "loss": 0.2936,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 1.2393162393162394,
1022
+ "grad_norm": 1.006551880177312,
1023
+ "learning_rate": 8.746357707610544e-06,
1024
+ "loss": 0.302,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 1.2478632478632479,
1029
+ "grad_norm": 1.169116918594509,
1030
+ "learning_rate": 8.721543888039534e-06,
1031
+ "loss": 0.2895,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 1.2564102564102564,
1036
+ "grad_norm": 1.0864182825636342,
1037
+ "learning_rate": 8.69652283653294e-06,
1038
+ "loss": 0.3077,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 1.264957264957265,
1043
+ "grad_norm": 0.9457510205128588,
1044
+ "learning_rate": 8.671295946372989e-06,
1045
+ "loss": 0.3046,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 1.2735042735042734,
1050
+ "grad_norm": 0.9421346142612829,
1051
+ "learning_rate": 8.6458646223039e-06,
1052
+ "loss": 0.2545,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 1.282051282051282,
1057
+ "grad_norm": 1.020294862762954,
1058
+ "learning_rate": 8.620230280453672e-06,
1059
+ "loss": 0.2773,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 1.2905982905982907,
1064
+ "grad_norm": 0.9909459877705835,
1065
+ "learning_rate": 8.594394348255239e-06,
1066
+ "loss": 0.2741,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 1.2991452991452992,
1071
+ "grad_norm": 0.9494309377838384,
1072
+ "learning_rate": 8.568358264366958e-06,
1073
+ "loss": 0.2467,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 1.3076923076923077,
1078
+ "grad_norm": 1.0161704485065284,
1079
+ "learning_rate": 8.542123478592518e-06,
1080
+ "loss": 0.287,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 1.3162393162393162,
1085
+ "grad_norm": 1.0207054242080966,
1086
+ "learning_rate": 8.515691451800206e-06,
1087
+ "loss": 0.2905,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 1.3247863247863247,
1092
+ "grad_norm": 1.022131931414966,
1093
+ "learning_rate": 8.489063655841552e-06,
1094
+ "loss": 0.2728,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 1.3333333333333333,
1099
+ "grad_norm": 1.0725266744704032,
1100
+ "learning_rate": 8.462241573469378e-06,
1101
+ "loss": 0.289,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 1.341880341880342,
1106
+ "grad_norm": 1.0458013617797695,
1107
+ "learning_rate": 8.435226698255228e-06,
1108
+ "loss": 0.2929,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 1.3504273504273505,
1113
+ "grad_norm": 0.9861514317089332,
1114
+ "learning_rate": 8.408020534506195e-06,
1115
+ "loss": 0.2572,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 1.358974358974359,
1120
+ "grad_norm": 1.1010237190802399,
1121
+ "learning_rate": 8.380624597181165e-06,
1122
+ "loss": 0.3027,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 1.3675213675213675,
1127
+ "grad_norm": 1.0258156162843595,
1128
+ "learning_rate": 8.353040411806449e-06,
1129
+ "loss": 0.2633,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 1.376068376068376,
1134
+ "grad_norm": 1.01005527335511,
1135
+ "learning_rate": 8.325269514390835e-06,
1136
+ "loss": 0.2983,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 1.3846153846153846,
1141
+ "grad_norm": 1.2204776934624333,
1142
+ "learning_rate": 8.297313451340064e-06,
1143
+ "loss": 0.2861,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 1.393162393162393,
1148
+ "grad_norm": 0.8734578653516611,
1149
+ "learning_rate": 8.269173779370712e-06,
1150
+ "loss": 0.2292,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 1.4017094017094016,
1155
+ "grad_norm": 0.9861868131334284,
1156
+ "learning_rate": 8.240852065423507e-06,
1157
+ "loss": 0.2777,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 1.4102564102564101,
1162
+ "grad_norm": 1.0383132702636761,
1163
+ "learning_rate": 8.21234988657607e-06,
1164
+ "loss": 0.2914,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 1.4188034188034189,
1169
+ "grad_norm": 1.0002371661495773,
1170
+ "learning_rate": 8.183668829955111e-06,
1171
+ "loss": 0.2978,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 1.4273504273504274,
1176
+ "grad_norm": 0.92226966003497,
1177
+ "learning_rate": 8.154810492648038e-06,
1178
+ "loss": 0.2509,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 1.435897435897436,
1183
+ "grad_norm": 0.9162109513490585,
1184
+ "learning_rate": 8.125776481614025e-06,
1185
+ "loss": 0.2571,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 1.4444444444444444,
1190
+ "grad_norm": 1.0277779346011928,
1191
+ "learning_rate": 8.096568413594533e-06,
1192
+ "loss": 0.2785,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 1.452991452991453,
1197
+ "grad_norm": 0.9850257001130588,
1198
+ "learning_rate": 8.067187915023283e-06,
1199
+ "loss": 0.2539,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 1.4615384615384617,
1204
+ "grad_norm": 1.0438356899162438,
1205
+ "learning_rate": 8.037636621935686e-06,
1206
+ "loss": 0.2766,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 1.4700854700854702,
1211
+ "grad_norm": 1.1044905378606227,
1212
+ "learning_rate": 8.007916179877742e-06,
1213
+ "loss": 0.3066,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 1.4786324786324787,
1218
+ "grad_norm": 1.1986894818242533,
1219
+ "learning_rate": 7.978028243814416e-06,
1220
+ "loss": 0.2934,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 1.4871794871794872,
1225
+ "grad_norm": 0.9261423596893972,
1226
+ "learning_rate": 7.947974478037468e-06,
1227
+ "loss": 0.267,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 1.4957264957264957,
1232
+ "grad_norm": 1.0443413434899798,
1233
+ "learning_rate": 7.917756556072792e-06,
1234
+ "loss": 0.2976,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 1.5042735042735043,
1239
+ "grad_norm": 1.0384861014624558,
1240
+ "learning_rate": 7.887376160587214e-06,
1241
+ "loss": 0.2864,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 1.5128205128205128,
1246
+ "grad_norm": 1.0318547123175033,
1247
+ "learning_rate": 7.85683498329481e-06,
1248
+ "loss": 0.2777,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 1.5213675213675213,
1253
+ "grad_norm": 0.9592453443113762,
1254
+ "learning_rate": 7.826134724862687e-06,
1255
+ "loss": 0.2653,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 1.5299145299145298,
1260
+ "grad_norm": 0.9570337836331478,
1261
+ "learning_rate": 7.795277094816292e-06,
1262
+ "loss": 0.2454,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 1.5384615384615383,
1267
+ "grad_norm": 1.0457133463401027,
1268
+ "learning_rate": 7.764263811444214e-06,
1269
+ "loss": 0.2712,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 1.547008547008547,
1274
+ "grad_norm": 1.0207456095370218,
1275
+ "learning_rate": 7.733096601702508e-06,
1276
+ "loss": 0.2732,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 1.5555555555555556,
1281
+ "grad_norm": 1.0244190668219126,
1282
+ "learning_rate": 7.70177720111852e-06,
1283
+ "loss": 0.2934,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 1.564102564102564,
1288
+ "grad_norm": 0.9954405580380525,
1289
+ "learning_rate": 7.67030735369426e-06,
1290
+ "loss": 0.2925,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 1.5726495726495726,
1295
+ "grad_norm": 0.9322832104494698,
1296
+ "learning_rate": 7.638688811809274e-06,
1297
+ "loss": 0.2472,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 1.5811965811965814,
1302
+ "grad_norm": 1.0600233137539596,
1303
+ "learning_rate": 7.6069233361230696e-06,
1304
+ "loss": 0.3104,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 1.5897435897435899,
1309
+ "grad_norm": 1.0083319379085491,
1310
+ "learning_rate": 7.575012695477076e-06,
1311
+ "loss": 0.2847,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 1.5982905982905984,
1316
+ "grad_norm": 1.041305415335912,
1317
+ "learning_rate": 7.542958666796149e-06,
1318
+ "loss": 0.2706,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 1.606837606837607,
1323
+ "grad_norm": 1.1329161208604377,
1324
+ "learning_rate": 7.510763034989616e-06,
1325
+ "loss": 0.2914,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 1.6153846153846154,
1330
+ "grad_norm": 1.0916420589362317,
1331
+ "learning_rate": 7.478427592851894e-06,
1332
+ "loss": 0.2786,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 1.623931623931624,
1337
+ "grad_norm": 1.0581617052700192,
1338
+ "learning_rate": 7.44595414096265e-06,
1339
+ "loss": 0.2628,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 1.6324786324786325,
1344
+ "grad_norm": 0.9898228571273449,
1345
+ "learning_rate": 7.413344487586542e-06,
1346
+ "loss": 0.284,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 1.641025641025641,
1351
+ "grad_norm": 0.9867082418046837,
1352
+ "learning_rate": 7.380600448572532e-06,
1353
+ "loss": 0.2893,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 1.6495726495726495,
1358
+ "grad_norm": 0.9672882314435588,
1359
+ "learning_rate": 7.347723847252756e-06,
1360
+ "loss": 0.2797,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 1.658119658119658,
1365
+ "grad_norm": 1.0401540523766375,
1366
+ "learning_rate": 7.314716514341007e-06,
1367
+ "loss": 0.246,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 1.6666666666666665,
1372
+ "grad_norm": 0.9689645676758608,
1373
+ "learning_rate": 7.28158028783079e-06,
1374
+ "loss": 0.2923,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 1.6752136752136753,
1379
+ "grad_norm": 0.935601541197187,
1380
+ "learning_rate": 7.248317012892969e-06,
1381
+ "loss": 0.2572,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 1.6837606837606838,
1386
+ "grad_norm": 1.10318785764845,
1387
+ "learning_rate": 7.214928541773027e-06,
1388
+ "loss": 0.2795,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 1.6923076923076923,
1393
+ "grad_norm": 0.9868329475934362,
1394
+ "learning_rate": 7.1814167336879195e-06,
1395
+ "loss": 0.284,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 1.7008547008547008,
1400
+ "grad_norm": 1.044608088122816,
1401
+ "learning_rate": 7.147783454722545e-06,
1402
+ "loss": 0.3048,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 1.7094017094017095,
1407
+ "grad_norm": 1.0799645803249942,
1408
+ "learning_rate": 7.1140305777258355e-06,
1409
+ "loss": 0.2863,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 1.717948717948718,
1414
+ "grad_norm": 1.0517923573554782,
1415
+ "learning_rate": 7.080159982206471e-06,
1416
+ "loss": 0.3145,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 1.7264957264957266,
1421
+ "grad_norm": 0.9968670693310975,
1422
+ "learning_rate": 7.046173554228213e-06,
1423
+ "loss": 0.254,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 1.735042735042735,
1428
+ "grad_norm": 0.964749838672855,
1429
+ "learning_rate": 7.012073186304885e-06,
1430
+ "loss": 0.2758,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 1.7435897435897436,
1435
+ "grad_norm": 1.0047621299766185,
1436
+ "learning_rate": 6.9778607772949894e-06,
1437
+ "loss": 0.2464,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 1.7521367521367521,
1442
+ "grad_norm": 1.0086773804431133,
1443
+ "learning_rate": 6.943538232295965e-06,
1444
+ "loss": 0.2825,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 1.7606837606837606,
1449
+ "grad_norm": 1.0353438135920368,
1450
+ "learning_rate": 6.909107462538113e-06,
1451
+ "loss": 0.2653,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 1.7692307692307692,
1456
+ "grad_norm": 1.075416890479264,
1457
+ "learning_rate": 6.874570385278161e-06,
1458
+ "loss": 0.2708,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 1.7777777777777777,
1463
+ "grad_norm": 1.0717559406017942,
1464
+ "learning_rate": 6.839928923692505e-06,
1465
+ "loss": 0.2816,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 1.7863247863247862,
1470
+ "grad_norm": 0.9699589020057593,
1471
+ "learning_rate": 6.805185006770125e-06,
1472
+ "loss": 0.2907,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 1.7948717948717947,
1477
+ "grad_norm": 1.037057337578332,
1478
+ "learning_rate": 6.7703405692051585e-06,
1479
+ "loss": 0.2938,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 1.8034188034188035,
1484
+ "grad_norm": 1.044362011849155,
1485
+ "learning_rate": 6.735397551289179e-06,
1486
+ "loss": 0.2687,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 1.811965811965812,
1491
+ "grad_norm": 1.033400330455886,
1492
+ "learning_rate": 6.700357898803146e-06,
1493
+ "loss": 0.2532,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 1.8205128205128205,
1498
+ "grad_norm": 0.9636160334145306,
1499
+ "learning_rate": 6.665223562909058e-06,
1500
+ "loss": 0.2592,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 1.8290598290598292,
1505
+ "grad_norm": 1.0596242484536975,
1506
+ "learning_rate": 6.629996500041299e-06,
1507
+ "loss": 0.2884,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 1.8376068376068377,
1512
+ "grad_norm": 1.153168789304082,
1513
+ "learning_rate": 6.5946786717977026e-06,
1514
+ "loss": 0.2597,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 1.8461538461538463,
1519
+ "grad_norm": 1.0937153973454066,
1520
+ "learning_rate": 6.5592720448303174e-06,
1521
+ "loss": 0.2828,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 1.8547008547008548,
1526
+ "grad_norm": 1.0435570626624995,
1527
+ "learning_rate": 6.523778590735892e-06,
1528
+ "loss": 0.264,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 1.8632478632478633,
1533
+ "grad_norm": 1.0159218667337082,
1534
+ "learning_rate": 6.488200285946094e-06,
1535
+ "loss": 0.2852,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 1.8717948717948718,
1540
+ "grad_norm": 1.04164062658954,
1541
+ "learning_rate": 6.452539111617454e-06,
1542
+ "loss": 0.29,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 1.8803418803418803,
1547
+ "grad_norm": 0.9410186884244581,
1548
+ "learning_rate": 6.416797053521039e-06,
1549
+ "loss": 0.2794,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 1.8888888888888888,
1554
+ "grad_norm": 1.1049755203106681,
1555
+ "learning_rate": 6.380976101931879e-06,
1556
+ "loss": 0.2781,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 1.8974358974358974,
1561
+ "grad_norm": 1.060999044968166,
1562
+ "learning_rate": 6.345078251518144e-06,
1563
+ "loss": 0.2954,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 1.9059829059829059,
1568
+ "grad_norm": 0.97766743042665,
1569
+ "learning_rate": 6.3091055012300675e-06,
1570
+ "loss": 0.2625,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 1.9145299145299144,
1575
+ "grad_norm": 0.9506649490274797,
1576
+ "learning_rate": 6.273059854188636e-06,
1577
+ "loss": 0.2661,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 1.9230769230769231,
1582
+ "grad_norm": 1.1043737999592356,
1583
+ "learning_rate": 6.236943317574054e-06,
1584
+ "loss": 0.3124,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 1.9316239316239316,
1589
+ "grad_norm": 0.9154283261070125,
1590
+ "learning_rate": 6.200757902513962e-06,
1591
+ "loss": 0.2478,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 1.9401709401709402,
1596
+ "grad_norm": 1.0837031286372636,
1597
+ "learning_rate": 6.164505623971458e-06,
1598
+ "loss": 0.2795,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 1.9487179487179487,
1603
+ "grad_norm": 1.1060980919238643,
1604
+ "learning_rate": 6.128188500632892e-06,
1605
+ "loss": 0.3015,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 1.9572649572649574,
1610
+ "grad_norm": 0.995226395302528,
1611
+ "learning_rate": 6.091808554795462e-06,
1612
+ "loss": 0.2527,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 1.965811965811966,
1617
+ "grad_norm": 1.0160669700353187,
1618
+ "learning_rate": 6.055367812254592e-06,
1619
+ "loss": 0.2596,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 1.9743589743589745,
1624
+ "grad_norm": 1.0168740840680386,
1625
+ "learning_rate": 6.0188683021911394e-06,
1626
+ "loss": 0.2526,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 1.982905982905983,
1631
+ "grad_norm": 1.0487534405210723,
1632
+ "learning_rate": 5.982312057058392e-06,
1633
+ "loss": 0.2754,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 1.9914529914529915,
1638
+ "grad_norm": 1.1701390273236945,
1639
+ "learning_rate": 5.9457011124689025e-06,
1640
+ "loss": 0.2923,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 2.0,
1645
+ "grad_norm": 1.1642958300030686,
1646
+ "learning_rate": 5.9090375070811215e-06,
1647
+ "loss": 0.2803,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 2.0085470085470085,
1652
+ "grad_norm": 1.069653544642503,
1653
+ "learning_rate": 5.872323282485889e-06,
1654
+ "loss": 0.1446,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 2.017094017094017,
1659
+ "grad_norm": 1.503292464135147,
1660
+ "learning_rate": 5.835560483092743e-06,
1661
+ "loss": 0.1597,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 2.0256410256410255,
1666
+ "grad_norm": 1.261233995216377,
1667
+ "learning_rate": 5.798751156016085e-06,
1668
+ "loss": 0.1642,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 2.034188034188034,
1673
+ "grad_norm": 1.2079697622320351,
1674
+ "learning_rate": 5.7618973509611755e-06,
1675
+ "loss": 0.1526,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 2.0427350427350426,
1680
+ "grad_norm": 1.149288621503201,
1681
+ "learning_rate": 5.72500112011001e-06,
1682
+ "loss": 0.1592,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 2.051282051282051,
1687
+ "grad_norm": 1.4762296190724578,
1688
+ "learning_rate": 5.688064518007036e-06,
1689
+ "loss": 0.1421,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 2.0598290598290596,
1694
+ "grad_norm": 2.003647719764341,
1695
+ "learning_rate": 5.651089601444752e-06,
1696
+ "loss": 0.1474,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 2.0683760683760686,
1701
+ "grad_norm": 1.7668906081339444,
1702
+ "learning_rate": 5.614078429349172e-06,
1703
+ "loss": 0.1366,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 2.076923076923077,
1708
+ "grad_norm": 2.3921788956538186,
1709
+ "learning_rate": 5.577033062665179e-06,
1710
+ "loss": 0.1582,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 2.0854700854700856,
1715
+ "grad_norm": 1.6101269928361035,
1716
+ "learning_rate": 5.53995556424176e-06,
1717
+ "loss": 0.1515,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 2.094017094017094,
1722
+ "grad_norm": 1.1559072830659123,
1723
+ "learning_rate": 5.50284799871714e-06,
1724
+ "loss": 0.1158,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 2.1025641025641026,
1729
+ "grad_norm": 1.2340271146467505,
1730
+ "learning_rate": 5.465712432403812e-06,
1731
+ "loss": 0.1349,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 2.111111111111111,
1736
+ "grad_norm": 1.2407989391392402,
1737
+ "learning_rate": 5.428550933173476e-06,
1738
+ "loss": 0.1353,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 2.1196581196581197,
1743
+ "grad_norm": 1.301482212210664,
1744
+ "learning_rate": 5.391365570341893e-06,
1745
+ "loss": 0.1552,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 2.128205128205128,
1750
+ "grad_norm": 1.2580505721084358,
1751
+ "learning_rate": 5.3541584145536475e-06,
1752
+ "loss": 0.1461,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 2.1367521367521367,
1757
+ "grad_norm": 1.4720652877475484,
1758
+ "learning_rate": 5.3169315376668566e-06,
1759
+ "loss": 0.1385,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 2.1452991452991452,
1764
+ "grad_norm": 1.1729142443934197,
1765
+ "learning_rate": 5.279687012637798e-06,
1766
+ "loss": 0.1293,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 2.1538461538461537,
1771
+ "grad_norm": 1.15630597157973,
1772
+ "learning_rate": 5.242426913405471e-06,
1773
+ "loss": 0.1152,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 2.1623931623931623,
1778
+ "grad_norm": 1.3236950867612902,
1779
+ "learning_rate": 5.2051533147761155e-06,
1780
+ "loss": 0.1405,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 2.1709401709401708,
1785
+ "grad_norm": 1.5274593351451313,
1786
+ "learning_rate": 5.167868292307679e-06,
1787
+ "loss": 0.1429,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 2.1794871794871793,
1792
+ "grad_norm": 1.1425761952751792,
1793
+ "learning_rate": 5.130573922194236e-06,
1794
+ "loss": 0.1309,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 2.1880341880341883,
1799
+ "grad_norm": 1.622095836566193,
1800
+ "learning_rate": 5.093272281150383e-06,
1801
+ "loss": 0.1422,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 2.1965811965811968,
1806
+ "grad_norm": 1.50224547669942,
1807
+ "learning_rate": 5.05596544629559e-06,
1808
+ "loss": 0.1526,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 2.2051282051282053,
1813
+ "grad_norm": 1.4032519853329708,
1814
+ "learning_rate": 5.018655495038542e-06,
1815
+ "loss": 0.1386,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 2.213675213675214,
1820
+ "grad_norm": 1.2766988294028478,
1821
+ "learning_rate": 4.981344504961459e-06,
1822
+ "loss": 0.1399,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 2.2222222222222223,
1827
+ "grad_norm": 1.3462278929217413,
1828
+ "learning_rate": 4.944034553704412e-06,
1829
+ "loss": 0.132,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 2.230769230769231,
1834
+ "grad_norm": 1.3348753763267436,
1835
+ "learning_rate": 4.906727718849619e-06,
1836
+ "loss": 0.1353,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 2.2393162393162394,
1841
+ "grad_norm": 1.4997085467156723,
1842
+ "learning_rate": 4.8694260778057655e-06,
1843
+ "loss": 0.146,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 2.247863247863248,
1848
+ "grad_norm": 1.326521062937016,
1849
+ "learning_rate": 4.832131707692322e-06,
1850
+ "loss": 0.1281,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 2.2564102564102564,
1855
+ "grad_norm": 1.1798260881739706,
1856
+ "learning_rate": 4.7948466852238844e-06,
1857
+ "loss": 0.1438,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 2.264957264957265,
1862
+ "grad_norm": 1.1727975205202528,
1863
+ "learning_rate": 4.757573086594529e-06,
1864
+ "loss": 0.116,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 2.2735042735042734,
1869
+ "grad_norm": 1.3822252924380758,
1870
+ "learning_rate": 4.720312987362204e-06,
1871
+ "loss": 0.1113,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 2.282051282051282,
1876
+ "grad_norm": 1.231698294599555,
1877
+ "learning_rate": 4.683068462333144e-06,
1878
+ "loss": 0.138,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 2.2905982905982905,
1883
+ "grad_norm": 1.4446379845008153,
1884
+ "learning_rate": 4.645841585446356e-06,
1885
+ "loss": 0.1324,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 2.299145299145299,
1890
+ "grad_norm": 1.2330401624249168,
1891
+ "learning_rate": 4.6086344296581095e-06,
1892
+ "loss": 0.1301,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 2.3076923076923075,
1897
+ "grad_norm": 1.2926146242762988,
1898
+ "learning_rate": 4.5714490668265245e-06,
1899
+ "loss": 0.1348,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 2.316239316239316,
1904
+ "grad_norm": 1.2530821975910227,
1905
+ "learning_rate": 4.534287567596189e-06,
1906
+ "loss": 0.1383,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 2.324786324786325,
1911
+ "grad_norm": 1.192627395626684,
1912
+ "learning_rate": 4.497152001282861e-06,
1913
+ "loss": 0.1316,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 2.3333333333333335,
1918
+ "grad_norm": 1.2535231135970228,
1919
+ "learning_rate": 4.460044435758241e-06,
1920
+ "loss": 0.1444,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 2.341880341880342,
1925
+ "grad_norm": 1.1274733333105196,
1926
+ "learning_rate": 4.4229669373348225e-06,
1927
+ "loss": 0.1477,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 2.3504273504273505,
1932
+ "grad_norm": 1.2274434991234653,
1933
+ "learning_rate": 4.3859215706508295e-06,
1934
+ "loss": 0.131,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 2.358974358974359,
1939
+ "grad_norm": 1.1890612042985977,
1940
+ "learning_rate": 4.348910398555249e-06,
1941
+ "loss": 0.1459,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 2.3675213675213675,
1946
+ "grad_norm": 1.2651976119409816,
1947
+ "learning_rate": 4.311935481992965e-06,
1948
+ "loss": 0.153,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 2.376068376068376,
1953
+ "grad_norm": 1.2073049155472424,
1954
+ "learning_rate": 4.274998879889991e-06,
1955
+ "loss": 0.1308,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 2.3846153846153846,
1960
+ "grad_norm": 1.2001752708922162,
1961
+ "learning_rate": 4.238102649038825e-06,
1962
+ "loss": 0.1401,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 2.393162393162393,
1967
+ "grad_norm": 1.1597559886153073,
1968
+ "learning_rate": 4.2012488439839185e-06,
1969
+ "loss": 0.1339,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 2.4017094017094016,
1974
+ "grad_norm": 1.2129337472313142,
1975
+ "learning_rate": 4.164439516907258e-06,
1976
+ "loss": 0.1235,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 2.41025641025641,
1981
+ "grad_norm": 1.164487908603764,
1982
+ "learning_rate": 4.127676717514114e-06,
1983
+ "loss": 0.1165,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 2.4188034188034186,
1988
+ "grad_norm": 1.5630221178287673,
1989
+ "learning_rate": 4.090962492918881e-06,
1990
+ "loss": 0.1283,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 2.427350427350427,
1995
+ "grad_norm": 1.4467081408521456,
1996
+ "learning_rate": 4.054298887531099e-06,
1997
+ "loss": 0.1427,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 2.435897435897436,
2002
+ "grad_norm": 1.3351337981128666,
2003
+ "learning_rate": 4.017687942941609e-06,
2004
+ "loss": 0.1266,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 2.4444444444444446,
2009
+ "grad_norm": 1.3739930621375298,
2010
+ "learning_rate": 3.981131697808862e-06,
2011
+ "loss": 0.127,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 2.452991452991453,
2016
+ "grad_norm": 1.3250657966359611,
2017
+ "learning_rate": 3.94463218774541e-06,
2018
+ "loss": 0.1317,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 2.4615384615384617,
2023
+ "grad_norm": 1.3839053620631172,
2024
+ "learning_rate": 3.90819144520454e-06,
2025
+ "loss": 0.1486,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 2.47008547008547,
2030
+ "grad_norm": 1.2541791548934644,
2031
+ "learning_rate": 3.8718114993671086e-06,
2032
+ "loss": 0.1411,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 2.4786324786324787,
2037
+ "grad_norm": 1.2797919636646522,
2038
+ "learning_rate": 3.835494376028544e-06,
2039
+ "loss": 0.1329,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 2.4871794871794872,
2044
+ "grad_norm": 1.19445175435913,
2045
+ "learning_rate": 3.799242097486038e-06,
2046
+ "loss": 0.1127,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 2.4957264957264957,
2051
+ "grad_norm": 1.263873181736575,
2052
+ "learning_rate": 3.7630566824259456e-06,
2053
+ "loss": 0.1229,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 2.5042735042735043,
2058
+ "grad_norm": 1.2758237081061692,
2059
+ "learning_rate": 3.726940145811363e-06,
2060
+ "loss": 0.1276,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 2.5128205128205128,
2065
+ "grad_norm": 1.304674554826579,
2066
+ "learning_rate": 3.6908944987699346e-06,
2067
+ "loss": 0.1151,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 2.5213675213675213,
2072
+ "grad_norm": 1.1714341440974179,
2073
+ "learning_rate": 3.6549217484818576e-06,
2074
+ "loss": 0.1395,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 2.52991452991453,
2079
+ "grad_norm": 1.3058811514063335,
2080
+ "learning_rate": 3.6190238980681235e-06,
2081
+ "loss": 0.1436,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 2.5384615384615383,
2086
+ "grad_norm": 1.2967742087987242,
2087
+ "learning_rate": 3.583202946478963e-06,
2088
+ "loss": 0.1258,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 2.547008547008547,
2093
+ "grad_norm": 1.1913612474105706,
2094
+ "learning_rate": 3.5474608883825475e-06,
2095
+ "loss": 0.1346,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 2.5555555555555554,
2100
+ "grad_norm": 1.1886275741984524,
2101
+ "learning_rate": 3.5117997140539073e-06,
2102
+ "loss": 0.1295,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 2.564102564102564,
2107
+ "grad_norm": 1.122495545975888,
2108
+ "learning_rate": 3.47622140926411e-06,
2109
+ "loss": 0.1225,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 2.5726495726495724,
2114
+ "grad_norm": 1.318932172034003,
2115
+ "learning_rate": 3.4407279551696846e-06,
2116
+ "loss": 0.1393,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 2.5811965811965814,
2121
+ "grad_norm": 1.2535465593212531,
2122
+ "learning_rate": 3.4053213282022983e-06,
2123
+ "loss": 0.1245,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 2.58974358974359,
2128
+ "grad_norm": 1.3994513320015718,
2129
+ "learning_rate": 3.370003499958703e-06,
2130
+ "loss": 0.1393,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 2.5982905982905984,
2135
+ "grad_norm": 1.3295335537122033,
2136
+ "learning_rate": 3.334776437090944e-06,
2137
+ "loss": 0.1303,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 2.606837606837607,
2142
+ "grad_norm": 1.2677029897614571,
2143
+ "learning_rate": 3.2996421011968546e-06,
2144
+ "loss": 0.1367,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 2.6153846153846154,
2149
+ "grad_norm": 1.2546238705761343,
2150
+ "learning_rate": 3.264602448710822e-06,
2151
+ "loss": 0.1312,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 2.623931623931624,
2156
+ "grad_norm": 1.3121100205006806,
2157
+ "learning_rate": 3.2296594307948428e-06,
2158
+ "loss": 0.1313,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 2.6324786324786325,
2163
+ "grad_norm": 1.3584184422228247,
2164
+ "learning_rate": 3.194814993229878e-06,
2165
+ "loss": 0.1328,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 2.641025641025641,
2170
+ "grad_norm": 1.253399856498852,
2171
+ "learning_rate": 3.1600710763074972e-06,
2172
+ "loss": 0.136,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 2.6495726495726495,
2177
+ "grad_norm": 1.2109051722868416,
2178
+ "learning_rate": 3.125429614721842e-06,
2179
+ "loss": 0.1272,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 2.658119658119658,
2184
+ "grad_norm": 1.3473576434309786,
2185
+ "learning_rate": 3.090892537461889e-06,
2186
+ "loss": 0.1459,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 2.6666666666666665,
2191
+ "grad_norm": 1.2233293824600466,
2192
+ "learning_rate": 3.056461767704037e-06,
2193
+ "loss": 0.1103,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 2.6752136752136755,
2198
+ "grad_norm": 1.7294644676940956,
2199
+ "learning_rate": 3.0221392227050126e-06,
2200
+ "loss": 0.1226,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 2.683760683760684,
2205
+ "grad_norm": 1.2909828604259357,
2206
+ "learning_rate": 2.9879268136951163e-06,
2207
+ "loss": 0.1195,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 2.6923076923076925,
2212
+ "grad_norm": 1.272394384043866,
2213
+ "learning_rate": 2.953826445771788e-06,
2214
+ "loss": 0.1253,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 2.700854700854701,
2219
+ "grad_norm": 1.3100049119552946,
2220
+ "learning_rate": 2.9198400177935303e-06,
2221
+ "loss": 0.1315,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 2.7094017094017095,
2226
+ "grad_norm": 1.4563737233249137,
2227
+ "learning_rate": 2.8859694222741653e-06,
2228
+ "loss": 0.1515,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 2.717948717948718,
2233
+ "grad_norm": 1.3661596293666407,
2234
+ "learning_rate": 2.852216545277456e-06,
2235
+ "loss": 0.1375,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 2.7264957264957266,
2240
+ "grad_norm": 1.3215922683830597,
2241
+ "learning_rate": 2.8185832663120817e-06,
2242
+ "loss": 0.1326,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 2.735042735042735,
2247
+ "grad_norm": 1.2997204668749665,
2248
+ "learning_rate": 2.785071458226972e-06,
2249
+ "loss": 0.1309,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 2.7435897435897436,
2254
+ "grad_norm": 1.38301882052004,
2255
+ "learning_rate": 2.7516829871070295e-06,
2256
+ "loss": 0.1373,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 2.752136752136752,
2261
+ "grad_norm": 1.203414342919684,
2262
+ "learning_rate": 2.718419712169213e-06,
2263
+ "loss": 0.1177,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 2.7606837606837606,
2268
+ "grad_norm": 1.1997353822311783,
2269
+ "learning_rate": 2.685283485658995e-06,
2270
+ "loss": 0.1287,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 2.769230769230769,
2275
+ "grad_norm": 1.2830714772919205,
2276
+ "learning_rate": 2.6522761527472464e-06,
2277
+ "loss": 0.1371,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 2.7777777777777777,
2282
+ "grad_norm": 1.2065889197198314,
2283
+ "learning_rate": 2.6193995514274705e-06,
2284
+ "loss": 0.1173,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 2.786324786324786,
2289
+ "grad_norm": 1.3541924537020815,
2290
+ "learning_rate": 2.586655512413458e-06,
2291
+ "loss": 0.1376,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 2.7948717948717947,
2296
+ "grad_norm": 1.3635242391799476,
2297
+ "learning_rate": 2.554045859037353e-06,
2298
+ "loss": 0.1479,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 2.8034188034188032,
2303
+ "grad_norm": 1.3506673316004048,
2304
+ "learning_rate": 2.521572407148107e-06,
2305
+ "loss": 0.1329,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 2.8119658119658117,
2310
+ "grad_norm": 1.7369024705223575,
2311
+ "learning_rate": 2.4892369650103837e-06,
2312
+ "loss": 0.1238,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 2.8205128205128203,
2317
+ "grad_norm": 1.2081751490349724,
2318
+ "learning_rate": 2.4570413332038523e-06,
2319
+ "loss": 0.1125,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 2.8290598290598292,
2324
+ "grad_norm": 1.2584213577853094,
2325
+ "learning_rate": 2.4249873045229244e-06,
2326
+ "loss": 0.1233,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 2.8376068376068377,
2331
+ "grad_norm": 1.246458599126342,
2332
+ "learning_rate": 2.3930766638769325e-06,
2333
+ "loss": 0.1289,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 2.8461538461538463,
2338
+ "grad_norm": 1.2067937513427751,
2339
+ "learning_rate": 2.3613111881907273e-06,
2340
+ "loss": 0.1375,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 2.8547008547008548,
2345
+ "grad_norm": 1.2530306295643197,
2346
+ "learning_rate": 2.3296926463057396e-06,
2347
+ "loss": 0.1279,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 2.8632478632478633,
2352
+ "grad_norm": 1.3298170862444603,
2353
+ "learning_rate": 2.29822279888148e-06,
2354
+ "loss": 0.154,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 2.871794871794872,
2359
+ "grad_norm": 1.2644393627660502,
2360
+ "learning_rate": 2.2669033982974946e-06,
2361
+ "loss": 0.1174,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 2.8803418803418803,
2366
+ "grad_norm": 1.262782045642597,
2367
+ "learning_rate": 2.235736188555787e-06,
2368
+ "loss": 0.1426,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 2.888888888888889,
2373
+ "grad_norm": 1.2952351378601683,
2374
+ "learning_rate": 2.2047229051837107e-06,
2375
+ "loss": 0.1235,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 2.8974358974358974,
2380
+ "grad_norm": 1.269259170523244,
2381
+ "learning_rate": 2.173865275137314e-06,
2382
+ "loss": 0.1237,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 2.905982905982906,
2387
+ "grad_norm": 1.2210835736635746,
2388
+ "learning_rate": 2.143165016705192e-06,
2389
+ "loss": 0.1172,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 2.9145299145299144,
2394
+ "grad_norm": 1.3169756003561237,
2395
+ "learning_rate": 2.1126238394127868e-06,
2396
+ "loss": 0.1245,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 2.9230769230769234,
2401
+ "grad_norm": 1.3863664568544543,
2402
+ "learning_rate": 2.082243443927212e-06,
2403
+ "loss": 0.131,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 2.931623931623932,
2408
+ "grad_norm": 1.3478658336934703,
2409
+ "learning_rate": 2.052025521962534e-06,
2410
+ "loss": 0.1084,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 2.9401709401709404,
2415
+ "grad_norm": 1.3228994525587703,
2416
+ "learning_rate": 2.0219717561855857e-06,
2417
+ "loss": 0.13,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 2.948717948717949,
2422
+ "grad_norm": 1.2682637394344838,
2423
+ "learning_rate": 1.992083820122259e-06,
2424
+ "loss": 0.1262,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 2.9572649572649574,
2429
+ "grad_norm": 1.3907553886466266,
2430
+ "learning_rate": 1.962363378064316e-06,
2431
+ "loss": 0.1196,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 2.965811965811966,
2436
+ "grad_norm": 1.417152488429629,
2437
+ "learning_rate": 1.9328120849767198e-06,
2438
+ "loss": 0.1304,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 2.9743589743589745,
2443
+ "grad_norm": 1.2447437410179203,
2444
+ "learning_rate": 1.9034315864054682e-06,
2445
+ "loss": 0.1088,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 2.982905982905983,
2450
+ "grad_norm": 1.0906420828574008,
2451
+ "learning_rate": 1.8742235183859747e-06,
2452
+ "loss": 0.098,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 2.9914529914529915,
2457
+ "grad_norm": 1.247352449950185,
2458
+ "learning_rate": 1.8451895073519643e-06,
2459
+ "loss": 0.1312,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 3.0,
2464
+ "grad_norm": 1.078500122533204,
2465
+ "learning_rate": 1.8163311700448899e-06,
2466
+ "loss": 0.1081,
2467
+ "step": 351
2468
+ }
2469
+ ],
2470
+ "logging_steps": 1,
2471
+ "max_steps": 468,
2472
+ "num_input_tokens_seen": 0,
2473
+ "num_train_epochs": 4,
2474
+ "save_steps": 500,
2475
+ "stateful_callbacks": {
2476
+ "TrainerControl": {
2477
+ "args": {
2478
+ "should_epoch_stop": false,
2479
+ "should_evaluate": false,
2480
+ "should_log": false,
2481
+ "should_save": true,
2482
+ "should_training_stop": false
2483
+ },
2484
+ "attributes": {}
2485
+ }
2486
+ },
2487
+ "total_flos": 5914678788096.0,
2488
+ "train_batch_size": 16,
2489
+ "trial_name": null,
2490
+ "trial_params": null
2491
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1711fb022d56b7d3ae350a140d0ad942052bbfc3b35700cf77dbd45fa031ee2
3
+ size 8081