--- tags: - target-identification - argumentation - contrastive-learning license: mit language: - en base_model: - answerdotai/ModernBERT-base pipeline_tag: text-classification --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: --- ## Model Description This is a dual-encoder retrieval model built on top of `answerdotai/ModernBERT-base`. The model is designed to perform target identification by finding the most relevant `theses` along with their associated data for a given `claim` You can modify the `top_k`, `num_args` & `top_level_only` variables to adjust the output of the model. ## How to use You can use this model for inference by loading it with the `transformers` library. The following code demonstrates how to make a prediction: ```python import torch import torch.nn as nn from transformers import AutoModel, AutoTokenizer from huggingface_hub import hf_hub_download, PyTorchModelHubMixin import pickle from sklearn.metrics.pairwise import cosine_similarity import numpy as np class DualEncoderThesisModel(nn.Module, PyTorchModelHubMixin): def __init__(self) -> None: super(DualEncoderThesisModel, self).__init__() self.encoder = AutoModel.from_pretrained("answerdotai/ModernBERT-base") def forward(self, input_ids_a, attention_mask_a, input_ids_b, attention_mask_b): # Encode arguments output_a = self.encoder(input_ids=input_ids_a, attention_mask=attention_mask_a).last_hidden_state emb_a = output_a[:, 0] # Encode theses output_b = self.encoder(input_ids=input_ids_b, attention_mask=attention_mask_b).last_hidden_state emb_b = output_b[:, 0] return emb_a, emb_b model_name = "azza1625/target-identification" tokenizer = AutoTokenizer.from_pretrained(model_name) model = DualEncoderThesisModel.from_pretrained(model_name) model.eval() device = "cpu" embeddings_path = hf_hub_download( repo_id="azza1625/target-identification", filename="retrieval_data_random_negatives_10_train_data.pkl" ) with open(embeddings_path, "rb") as f: embeddings_metadata = pickle.load(f) @torch.no_grad() def retrieve_theses(claim, top_k=3, num_args=5, top_level_only=True, device="cpu"): stored_embeddings = embeddings_metadata["embeddings"] metadata = embeddings_metadata["metadata"] enc = tokenizer(claim, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device) query_embedding = model.encoder(**enc).last_hidden_state[:, 0].cpu().numpy() sims = cosine_similarity(query_embedding, stored_embeddings)[0] top_indices = np.argsort(sims)[::-1][:top_k] results = [] for idx in top_indices: arguments = metadata[idx]['arguments'] if top_level_only: arguments = [arg for arg in arguments if arg['target_type'] == 'thesis'] results.append({ "thesis": metadata[idx]["thesis"], "debate_title": metadata[idx]["debate_title"], "arguments": arguments[:num_args] }) return results claim = "A fetus or embryo is not a person; therefore, abortion should not be considered murder." theses = retrieve_theses(claim) for thesis in theses: print(f"{thesis['thesis']} | {thesis['debate_title']}")