--- tags: - image-classification - birder - pytorch library_name: birder license: apache-2.0 --- # Model Card for efficientvim_m1_il-common A EfficientViM image classification model. This model was trained on the `il-common` dataset, which contains common bird species found in Israel. The species list is derived from data available at . ## Model Details - **Model Type:** Image classification and detection backbone - **Model Stats:** - Params (M): 6.1 - Input image size: 256 x 256 - **Dataset:** il-common (371 classes) - **Papers:** - EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality: ## Model Usage ### Image Classification ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("efficientvim_m1_il-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format (out, _) = infer_image(net, image, transform) # out is a NumPy array with shape of (1, 371), representing class probabilities. ``` ### Image Embeddings ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("efficientvim_m1_il-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image (out, embedding) = infer_image(net, image, transform, return_embedding=True) # embedding is a NumPy array with shape of (1, 320) ``` ### Detection Feature Map ```python from PIL import Image import birder (net, model_info) = birder.load_pretrained_model("efficientvim_m1_il-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = Image.open("path/to/image.jpeg") features = net.detection_features(transform(image).unsqueeze(0)) # features is a dict (stage name -> torch.Tensor) print([(k, v.size()) for k, v in features.items()]) # Output example: # [('stage1', torch.Size([1, 128, 16, 16])), # ('stage2', torch.Size([1, 192, 8, 8])), # ('stage3', torch.Size([1, 320, 4, 4]))] ``` ## Citation ```bibtex @misc{lee2025efficientvimefficientvisionmamba, title={EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality}, author={Sanghyeok Lee and Joonmyung Choi and Hyunwoo J. Kim}, year={2025}, eprint={2411.15241}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2411.15241}, } ```