|
#include <satisfier> |
|
#include <string> |
|
|
|
bool is_topological_space(const std::string& M) |
|
{ |
|
bool result = true; |
|
|
|
|
|
|
|
return result; |
|
} |
|
|
|
int main () |
|
{ |
|
|
|
Suppose_literal (a_topological_space_M, is_topological_space ("M_string")); |
|
|
|
|
|
Suppose_literal (M_is_Hausdorff, true); |
|
Suppose_literal (points_can_be_seperated_by_open_sets, true); |
|
Suppose_literal (M_is_second_countable, true); |
|
Suppose_literal (M_has_a_countable_topological_base, true); |
|
Suppose_literal (p_is_element_of_M, true); |
|
Suppose_literal (U_is_proper_subset_of_M, true); |
|
Suppose_literal (V_is_subset_of_real_coordinate_space_of_dimension_n, true); |
|
Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true); |
|
Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true); |
|
|
|
auto manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets). And (M_is_second_countable). And (M_has_a_countable_topological_base). And (p_is_element_of_M). And (U_is_proper_subset_of_M). And (V_is_subset_of_real_coordinate_space_of_dimension_n). And (for_all_p_there_is_an_open_neighbourhood_U). And (U_is_homeomorphic_to_an_open_subset_V). Implying (a_topological_space_M);
|
|
|
|
bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value ();
|
|
Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
|
|
|
|
|
|
Suppose_literal (U_is_element_of_M, true);
|
|
Suppose_literal (a_pair_U_psi_where_U_is_open, true);
|
|
Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
|
|
|
|
auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
|
|
|
|
Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value());
|
|
|
|
|
|
Suppose_literal (p_is_element_of_the_pair_U_phi, true);
|
|
Suppose_literal (p_is_element_of_U, true);
|
|
Suppose_literal (for_all_p_for_some_chart, true);
|
|
|
|
auto remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U). Implying (p_is_element_of_the_pair_U_phi);
|
|
|
|
auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
|
|
|
|
auto rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart. Implying (third_condition_from_definition_2_1);
|
|
|
|
return 0; |
|
} |
|
|