Upload folder using huggingface_hub
Browse files- README.md +183 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- facebook/anli
|
| 4 |
+
metrics:
|
| 5 |
+
- accuracy
|
| 6 |
+
base_model:
|
| 7 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
| 8 |
+
pipeline_tag: sentence-similarity
|
| 9 |
+
library_name: peft
|
| 10 |
+
tags:
|
| 11 |
+
- NLI
|
| 12 |
+
---
|
| 13 |
+
# Model Card for Model ID
|
| 14 |
+
|
| 15 |
+
The Meta Llama-3.1-8B-Instruct model fine-tuned on the Adversarial Natural Language Inference (ANLI) Benchmark.
|
| 16 |
+
|
| 17 |
+
**Evaluation Results**
|
| 18 |
+
|
| 19 |
+
Accuracy:
|
| 20 |
+
| ANLI-R1 | ANLI-R2 | ANLI-R3 | Avg. |
|
| 21 |
+
| ------- | ------- |-------|-------|
|
| 22 |
+
| 77.2 | 62.8 | 61.2 | 67.1 |
|
| 23 |
+
|
| 24 |
+
## Usage
|
| 25 |
+
|
| 26 |
+
NLI use-case:
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 30 |
+
from transformers import AutoTokenizer
|
| 31 |
+
from peft import PeftModel
|
| 32 |
+
import torch
|
| 33 |
+
|
| 34 |
+
base_model_name = 'meta-llama/Llama-3.1-8B-Instruct'
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 37 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 38 |
+
device_map='auto')
|
| 39 |
+
|
| 40 |
+
lora_model = PeftModel.from_pretrained(model, 'cassuto/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct')
|
| 41 |
+
|
| 42 |
+
label_str = ['entailment', 'neutral', 'contradiction']
|
| 43 |
+
|
| 44 |
+
def eval(premise : str, hypothesis : str, device = 'cuda'):
|
| 45 |
+
input = ("<|start_header_id|>system<|end_header_id|>\n\nBased on the following premise, determine if the hypothesis is entailment, contradiction, or neutral." +
|
| 46 |
+
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
| 47 |
+
"<Premise>: " + premise + "\n\n<Hypothesis>: " + hypothesis + "\n\n" +
|
| 48 |
+
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>")
|
| 49 |
+
tk = tokenizer(input)
|
| 50 |
+
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
input_ids = torch.tensor(tk['input_ids']).unsqueeze(0).to(device)
|
| 53 |
+
out = lora_model.generate(input_ids=input_ids,
|
| 54 |
+
attention_mask=torch.tensor(tk['attention_mask']).unsqueeze(0).to(device),
|
| 55 |
+
max_new_tokens=10
|
| 56 |
+
)
|
| 57 |
+
print(tokenizer.decode(out[0]))
|
| 58 |
+
s = tokenizer.decode(out[0][input_ids.shape[-1]:])
|
| 59 |
+
for lbl, l in enumerate(label_str):
|
| 60 |
+
if s.find(l) > -1:
|
| 61 |
+
return lbl
|
| 62 |
+
else:
|
| 63 |
+
assert False, 'Invalid model output: ' + s
|
| 64 |
+
|
| 65 |
+
print(eval("A man is playing a guitar.", "A woman is reading a book."))
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## Training Details
|
| 69 |
+
|
| 70 |
+
- **Dataset:** facebook/anli
|
| 71 |
+
- **Hardware:** NIVIDA H20 (96GB) card x1.
|
| 72 |
+
|
| 73 |
+
#### Fine Tuning Hyperparameters
|
| 74 |
+
|
| 75 |
+
- **Training regime:** fp16 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 76 |
+
- **LoRA rank:** 64
|
| 77 |
+
- **LoRA alpha:** 16
|
| 78 |
+
- **LoRA dropout:** 0.1
|
| 79 |
+
- **Learning rate:** 0.0001
|
| 80 |
+
- **Training Batch Size:** 4
|
| 81 |
+
- **Epoch:** 3
|
| 82 |
+
- **Context length:** 2048
|
| 83 |
+
|
| 84 |
+
#### Fine Tuning Code
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from datasets import load_dataset
|
| 88 |
+
import numpy as np
|
| 89 |
+
|
| 90 |
+
dataset = load_dataset("anli")
|
| 91 |
+
|
| 92 |
+
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
| 93 |
+
def out_ckp(r):
|
| 94 |
+
return f"/path/to/project/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct/checkpoints-r{r}"
|
| 95 |
+
def out_lora_model_fn(r):
|
| 96 |
+
return f'/path/to/project/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct/lora-r{r}'
|
| 97 |
+
|
| 98 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 99 |
+
|
| 100 |
+
from transformers import AutoTokenizer, GenerationConfig
|
| 101 |
+
from peft import LoraConfig, get_peft_model, PeftModel
|
| 102 |
+
from trl import SFTConfig, SFTTrainer
|
| 103 |
+
import torch
|
| 104 |
+
from collections.abc import Mapping
|
| 105 |
+
|
| 106 |
+
label_str = ['entailment', 'neutral', 'contradiction']
|
| 107 |
+
|
| 108 |
+
def preprocess_function(examples):
|
| 109 |
+
inputs = ["<|start_header_id|>system<|end_header_id|>\n\nBased on the following premise, determine if the hypothesis is entailment, contradiction, or neutral." +
|
| 110 |
+
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
| 111 |
+
"<Premise>: " + p + "\n\n<Hypothesis>: " + h + "\n\n" +
|
| 112 |
+
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>" + label_str[lbl] + "<|eot_id|>\n" # FIXME remove \n
|
| 113 |
+
for p, h, lbl in zip(examples["premise"], examples["hypothesis"], examples['label'])]
|
| 114 |
+
|
| 115 |
+
model_inputs = {}
|
| 116 |
+
model_inputs['text'] = inputs
|
| 117 |
+
return model_inputs
|
| 118 |
+
|
| 119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 120 |
+
|
| 121 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 122 |
+
pad_token_id=tokenizer.eos_token,
|
| 123 |
+
device_map='auto')
|
| 124 |
+
model.config.use_cache=False
|
| 125 |
+
model.config.pretraining_tp=1
|
| 126 |
+
|
| 127 |
+
tokenizer.padding_side = "right"
|
| 128 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 129 |
+
|
| 130 |
+
for r in range(1,4):
|
| 131 |
+
print('Round ', r)
|
| 132 |
+
|
| 133 |
+
train_data = dataset[f'train_r{r}']
|
| 134 |
+
val_data = dataset[f'dev_r{r}']
|
| 135 |
+
train_data = train_data.map(preprocess_function, batched=True,num_proc=8)
|
| 136 |
+
val_data = val_data.map(preprocess_function, batched=True,num_proc=8)
|
| 137 |
+
|
| 138 |
+
training_args = SFTConfig(
|
| 139 |
+
fp16=True,
|
| 140 |
+
output_dir=out_ckp(r),
|
| 141 |
+
learning_rate=1e-4,
|
| 142 |
+
per_device_train_batch_size=4,
|
| 143 |
+
per_device_eval_batch_size=1,
|
| 144 |
+
num_train_epochs=3,
|
| 145 |
+
logging_steps=10,
|
| 146 |
+
weight_decay=0,
|
| 147 |
+
logging_dir=f"./logs-r{r}",
|
| 148 |
+
save_strategy="epoch",
|
| 149 |
+
save_total_limit=1,
|
| 150 |
+
max_seq_length=2048,
|
| 151 |
+
packing=False,
|
| 152 |
+
dataset_text_field="text"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
if r==1:
|
| 156 |
+
# create LoRA model
|
| 157 |
+
peft_config = LoraConfig(
|
| 158 |
+
r=64,
|
| 159 |
+
lora_alpha=16,
|
| 160 |
+
lora_dropout=0.1,
|
| 161 |
+
bias="none",
|
| 162 |
+
task_type='CAUSAL_LM'
|
| 163 |
+
)
|
| 164 |
+
lora_model = get_peft_model(model, peft_config)
|
| 165 |
+
else:
|
| 166 |
+
# load the previous trained LoRA part
|
| 167 |
+
lora_model = PeftModel.from_pretrained(model, out_lora_model_fn(r-1),
|
| 168 |
+
is_trainable=True)
|
| 169 |
+
|
| 170 |
+
trainer = SFTTrainer(
|
| 171 |
+
model=lora_model,
|
| 172 |
+
tokenizer=tokenizer,
|
| 173 |
+
args=training_args,
|
| 174 |
+
train_dataset=train_data,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
trainer.train()
|
| 178 |
+
print(f'saving to "{out_lora_model_fn(r)}"')
|
| 179 |
+
lora_model.save_pretrained(out_lora_model_fn(r))
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
- PEFT 0.13.2
|
adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "/root/autodl-tmp/Llama-3.1-8B-Instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 64,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a86019e18a1e0b62acc814d6adc53cdd914e0e0d198bd45e0f6ef9490b21d1a1
|
| 3 |
+
size 109069176
|