Create handler.py
Browse files- handler.py +61 -0
handler.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import pickle
|
| 3 |
+
import os
|
| 4 |
+
import __main__
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
class CollaborativeRecommender:
|
| 8 |
+
def __init__(self, algo, trainset):
|
| 9 |
+
self.algo = algo
|
| 10 |
+
self.trainset = trainset
|
| 11 |
+
|
| 12 |
+
def predict(self, user_id, k=10):
|
| 13 |
+
try:
|
| 14 |
+
# Convert raw user_id to inner user_id
|
| 15 |
+
inner_user_id = self.trainset.to_inner_uid(user_id)
|
| 16 |
+
except ValueError:
|
| 17 |
+
# User not found in trainset, return None
|
| 18 |
+
return None
|
| 19 |
+
|
| 20 |
+
# Get the list of books the user has interacted with
|
| 21 |
+
user_books = set(self.trainset.ur[inner_user_id])
|
| 22 |
+
all_books = set(self.trainset.all_items())
|
| 23 |
+
unseen_books = all_books - user_books
|
| 24 |
+
# Predict the ratings for unseen books
|
| 25 |
+
predictions = [self.algo.predict(self.trainset.to_raw_uid(inner_user_id), self.trainset.to_raw_iid(book_id)) for book_id in unseen_books]
|
| 26 |
+
# Sort the predictions by estimated rating and return the top-k books
|
| 27 |
+
top_predictions = sorted(predictions, key=lambda x: x.est, reverse=True)[:k]
|
| 28 |
+
top_books = [pred.iid for pred in top_predictions]
|
| 29 |
+
return top_books
|
| 30 |
+
|
| 31 |
+
__main__.CollaborativeRecommender = CollaborativeRecommender
|
| 32 |
+
|
| 33 |
+
class EndpointHandler:
|
| 34 |
+
def __init__(self, path=""):
|
| 35 |
+
model_path = os.path.join(path, "model.pkl")
|
| 36 |
+
with open(model_path, 'rb') as f:
|
| 37 |
+
self.model = pickle.load(f)
|
| 38 |
+
|
| 39 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 40 |
+
# Extract the 'inputs' from the data
|
| 41 |
+
inputs = data.get('inputs', {})
|
| 42 |
+
|
| 43 |
+
# If inputs is a string (for single user_id input), convert it to a dict
|
| 44 |
+
if isinstance(inputs, str):
|
| 45 |
+
inputs = {'user_id': inputs}
|
| 46 |
+
|
| 47 |
+
user_id = inputs.get('user_id')
|
| 48 |
+
k = inputs.get('k', 10) # Default to 10 if not provided
|
| 49 |
+
|
| 50 |
+
if user_id is None:
|
| 51 |
+
return [{"error": "user_id is required"}]
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
recommended_books = self.model.predict(user_id, k=k)
|
| 55 |
+
return [{"recommended_books": recommended_books}]
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return [{"error": str(e)}]
|
| 58 |
+
|
| 59 |
+
def load_model(model_path):
|
| 60 |
+
handler = EndpointHandler(model_path)
|
| 61 |
+
return handler
|