--- license: mit library_name: transformers datasets: - FractalAIResearch/Fathom-V0.4-SFT-Shortest-Chains - FractalAIResearch/Fathom-V0.6-Iterative-Curriculum-Learning base_model: FractalAIResearch/Fathom-R1-14B tags: - mlx --- # cnfusion/Fathom-R1-14B-mlx-8Bit The Model [cnfusion/Fathom-R1-14B-mlx-8Bit](https://huggingface.co/cnfusion/Fathom-R1-14B-mlx-8Bit) was converted to MLX format from [FractalAIResearch/Fathom-R1-14B](https://huggingface.co/FractalAIResearch/Fathom-R1-14B) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cnfusion/Fathom-R1-14B-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```