File size: 5,406 Bytes
3e9c37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - image-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora

  - template:sd-lora
  - standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'a breathtaking anime-style portrait of nikolai, capturing his essence with vibrant colors and expressive features'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
- text: 'a high-quality, detailed photograph of nikolai as a sous-chef, immersed in the art of culinary creation'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'a lifelike and intimate portrait of nikolai, showcasing his unique personality and charm'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_0.png
- text: 'a cinematic, visually stunning photo of nikolai, emphasizing his dramatic and captivating presence'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
- text: 'an elegant and timeless portrait of nikolai, exuding grace and sophistication'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_5_0.png
- text: 'a dynamic and adventurous photo of nikolai, captured in an exciting, action-filled moment'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_6_0.png
- text: 'a mysterious and enigmatic portrait of nikolai, shrouded in shadows and intrigue'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_7_0.png
- text: 'a vintage-style portrait of nikolai, evoking the charm and nostalgia of a bygone era'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_8_0.png
- text: 'an artistic and abstract representation of nikolai, blending creativity with visual storytelling'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_9_0.png
- text: 'a futuristic and cutting-edge portrayal of nikolai, set against a backdrop of advanced technology'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_10_0.png
- text: 'A picture of nikolai'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_11_0.png
---

# simpletuner-lora

This is a PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).

The main validation prompt used during training was:
```
A picture of nikolai
```


## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance: 

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 29
- Training steps: 500
- Learning rate: 0.0001
  - Learning rate schedule: polynomial
  - Warmup steps: 100
- Max grad value: 1.0
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow_matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=mmdit'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision: `fp8-torchao`
- Caption dropout probability: 0.1%


- LoRA Rank: 16
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
- LoRA mode: Standard
    

## Datasets

### dreambooth-subject
- Repeats: 0
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'codingrobot/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A picture of nikolai"


## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]

model_output.save("output.png", format="PNG")

```