a94f1a4aab14c6de0f35752493bfbc3d

This model is a fine-tuned version of albert/albert-large-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7659
  • Data Size: 0.125
  • Epoch Runtime: 15.7110
  • Accuracy: 0.5093
  • F1 Macro: 0.3374
  • Rouge1: 0.5093
  • Rouge2: 0.0
  • Rougel: 0.5093
  • Rougelsum: 0.5081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6850 0 1.0444 0.5718 0.5666 0.5729 0.0 0.5729 0.5729
No log 1 2104 0.5461 0.0078 2.5640 0.7766 0.7765 0.7766 0.0 0.7755 0.7778
No log 2 4208 0.6346 0.0156 2.9685 0.6678 0.6622 0.6678 0.0 0.6690 0.6678
0.0144 3 6312 0.9086 0.0312 4.8693 0.6944 0.6733 0.6956 0.0 0.6956 0.6956
0.7168 4 8416 0.7077 0.0625 8.6248 0.5093 0.3374 0.5093 0.0 0.5093 0.5081
0.6975 5 10520 0.7659 0.125 15.7110 0.5093 0.3374 0.5093 0.0 0.5093 0.5081

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
1
Safetensors
Model size
17.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/a94f1a4aab14c6de0f35752493bfbc3d

Finetuned
(19)
this model