a94f1a4aab14c6de0f35752493bfbc3d
This model is a fine-tuned version of albert/albert-large-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.7659
- Data Size: 0.125
- Epoch Runtime: 15.7110
- Accuracy: 0.5093
- F1 Macro: 0.3374
- Rouge1: 0.5093
- Rouge2: 0.0
- Rougel: 0.5093
- Rougelsum: 0.5081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6850 | 0 | 1.0444 | 0.5718 | 0.5666 | 0.5729 | 0.0 | 0.5729 | 0.5729 |
| No log | 1 | 2104 | 0.5461 | 0.0078 | 2.5640 | 0.7766 | 0.7765 | 0.7766 | 0.0 | 0.7755 | 0.7778 |
| No log | 2 | 4208 | 0.6346 | 0.0156 | 2.9685 | 0.6678 | 0.6622 | 0.6678 | 0.0 | 0.6690 | 0.6678 |
| 0.0144 | 3 | 6312 | 0.9086 | 0.0312 | 4.8693 | 0.6944 | 0.6733 | 0.6956 | 0.0 | 0.6956 | 0.6956 |
| 0.7168 | 4 | 8416 | 0.7077 | 0.0625 | 8.6248 | 0.5093 | 0.3374 | 0.5093 | 0.0 | 0.5093 | 0.5081 |
| 0.6975 | 5 | 10520 | 0.7659 | 0.125 | 15.7110 | 0.5093 | 0.3374 | 0.5093 | 0.0 | 0.5093 | 0.5081 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for contemmcm/a94f1a4aab14c6de0f35752493bfbc3d
Base model
albert/albert-large-v1