--- license: mit language: - ko - en metrics: - accuracy base_model: - sentence-transformers/all-MiniLM-L6-v2 pipeline_tag: text-classification library_name: transformers tags: - korean - toxicity - safety - moderation --- # KillSwitch AI πŸ›‘οΈ **μ‹€μ‹œκ°„ μ•…μ„± ν”„λ‘¬ν”„νŠΈ 탐지 λͺ¨λΈ** 이 λͺ¨λΈμ€ ν•œκ΅­μ–΄μ™€ μ˜μ–΄ ν”„λ‘¬ν”„νŠΈλ₯Ό λΆ„μ„ν•˜μ—¬ **μ•…μ„±/μ•ˆμ „ μ—¬λΆ€**λ₯Ό λΆ„λ₯˜ν•©λ‹ˆλ‹€. ν”Όμ‹±, κ·œμΉ™ 우회, λΆˆλ²• ν–‰μœ„ μš”μ²­ λ“± μœ„ν—˜ μš”μ†Œλ₯Ό 사전에 탐지할 수 μžˆλ„λ‘ μ„€κ³„λ˜μ—ˆμŠ΅λ‹ˆλ‹€. --- ## πŸ“Œ Model Details - **Base Model:** sentence-transformers/all-MiniLM-L6-v2 - **Languages:** Korean, English - **Task:** Text Classification (μ•…μ„± vs μ•ˆμ „) - **Library:** Transformers (PyTorch) --- ## πŸ“Š Evaluation - Metric: Accuracy - Validation Accuracy: 0.87 (μ˜ˆμ‹œ, μ‹€μ œ κ°’ λ„£κΈ°) - F1 Score: 0.85 --- ## πŸš€ Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("μ‚¬μš©μžλͺ…/KillSwitch_ai") model = AutoModelForSequenceClassification.from_pretrained("μ‚¬μš©μžλͺ…/KillSwitch_ai") inputs = tokenizer("이 ν”„λ‘¬ν”„νŠΈλŠ” κ·œμΉ™μ„ μš°νšŒν•˜λ €κ³  ν•©λ‹ˆλ‹€", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits pred = torch.softmax(logits, dim=-1).argmax(dim=-1).item() print("μ•…μ„±" if pred == 1 else "μ•ˆμ „")