createthis commited on
Commit
b80ccb4
·
verified ·
1 Parent(s): 1bb7998

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. LICENSE +21 -0
  3. README.md +151 -3
  4. assets/chat_template.jinja +90 -0
  5. assets/cost.png +3 -0
  6. config.json +66 -0
  7. generation_config.json +9 -0
  8. inference/README.md +14 -0
  9. inference/config_671B_v3.2.json +26 -0
  10. inference/convert.py +100 -0
  11. inference/generate.py +186 -0
  12. inference/kernel.py +274 -0
  13. inference/model.py +912 -0
  14. inference/requirements.txt +5 -0
  15. model-00001-of-000163.safetensors +3 -0
  16. model-00002-of-000163.safetensors +3 -0
  17. model-00003-of-000163.safetensors +3 -0
  18. model-00004-of-000163.safetensors +3 -0
  19. model-00005-of-000163.safetensors +3 -0
  20. model-00006-of-000163.safetensors +3 -0
  21. model-00007-of-000163.safetensors +3 -0
  22. model-00008-of-000163.safetensors +3 -0
  23. model-00009-of-000163.safetensors +3 -0
  24. model-00010-of-000163.safetensors +3 -0
  25. model-00011-of-000163.safetensors +3 -0
  26. model-00012-of-000163.safetensors +3 -0
  27. model-00013-of-000163.safetensors +3 -0
  28. model-00014-of-000163.safetensors +3 -0
  29. model-00015-of-000163.safetensors +3 -0
  30. model-00016-of-000163.safetensors +3 -0
  31. model-00017-of-000163.safetensors +3 -0
  32. model-00018-of-000163.safetensors +3 -0
  33. model-00019-of-000163.safetensors +3 -0
  34. model-00020-of-000163.safetensors +3 -0
  35. model-00021-of-000163.safetensors +3 -0
  36. model-00022-of-000163.safetensors +3 -0
  37. model-00023-of-000163.safetensors +3 -0
  38. model-00024-of-000163.safetensors +3 -0
  39. model-00025-of-000163.safetensors +3 -0
  40. model-00026-of-000163.safetensors +3 -0
  41. model-00027-of-000163.safetensors +3 -0
  42. model-00028-of-000163.safetensors +3 -0
  43. model-00029-of-000163.safetensors +3 -0
  44. model-00030-of-000163.safetensors +3 -0
  45. model-00031-of-000163.safetensors +3 -0
  46. model-00032-of-000163.safetensors +3 -0
  47. model-00033-of-000163.safetensors +3 -0
  48. model-00034-of-000163.safetensors +3 -0
  49. model-00035-of-000163.safetensors +3 -0
  50. model-00036-of-000163.safetensors +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/cost.png filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 DeepSeek
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,151 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ base_model:
5
+ - deepseek-ai/DeepSeek-V3.2-Exp-Base
6
+ ---
7
+ # DeepSeek-V3.2-Exp
8
+
9
+ <!-- markdownlint-disable first-line-h1 -->
10
+ <!-- markdownlint-disable html -->
11
+ <!-- markdownlint-disable no-duplicate-header -->
12
+
13
+ <div align="center">
14
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
15
+ </div>
16
+ <hr>
17
+ <div align="center" style="line-height: 1;">
18
+ <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
19
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
20
+ </a>
21
+ <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
22
+ <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
23
+ </a>
24
+ <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
25
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
26
+ </a>
27
+ </div>
28
+ <div align="center" style="line-height: 1;">
29
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
30
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
31
+ </a>
32
+ <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
33
+ <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
34
+ </a>
35
+ <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
36
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
37
+ </a>
38
+ </div>
39
+ <div align="center" style="line-height: 1;">
40
+ <a href="LICENSE" style="margin: 2px;">
41
+ <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
42
+ </a>
43
+ </div>
44
+
45
+ ## Introduction
46
+
47
+
48
+ We are excited to announce the official release of DeepSeek-V3.2-Exp, an experimental version of our model. As an intermediate step toward our next-generation architecture, V3.2-Exp builds upon V3.1-Terminus by introducing DeepSeek Sparse Attention—a sparse attention mechanism designed to explore and validate optimizations for training and inference efficiency in long-context scenarios.
49
+
50
+ This experimental release represents our ongoing research into more efficient transformer architectures, particularly focusing on improving computational efficiency when processing extended text sequences.
51
+
52
+ <div align="center">
53
+ <img src="assets/cost.png" >
54
+ </div>
55
+
56
+ - DeepSeek Sparse Attention (DSA) achieves fine-grained sparse attention for the first time, delivering substantial improvements in long-context training and inference efficiency while maintaining virtually identical model output quality.
57
+
58
+
59
+ - To rigorously evaluate the impact of introducing sparse attention, we deliberately aligned the training configurations of DeepSeek-V3.2-Exp with V3.1-Terminus. Across public benchmarks in various domains, DeepSeek-V3.2-Exp demonstrates performance on par with V3.1-Terminus.
60
+
61
+
62
+ | Benchmark | DeepSeek-V3.1-Terminus | DeepSeek-V3.2-Exp |
63
+ | :--- | :---: | :---: |
64
+ | **Reasoning Mode w/o Tool Use** | | |
65
+ | MMLU-Pro | 85.0 | 85.0 |
66
+ | GPQA-Diamond | 80.7 | 79.9 |
67
+ | Humanity's Last Exam | 21.7 | 19.8 |
68
+ | LiveCodeBench | 74.9 | 74.1 |
69
+ | AIME 2025 | 88.4 | 89.3 |
70
+ | HMMT 2025 | 86.1 | 83.6 |
71
+ | Codeforces | 2046 | 2121 |
72
+ | Aider-Polyglot | 76.1 | 74.5 |
73
+ | **Agentic Tool Use** | | |
74
+ | BrowseComp | 38.5 | 40.1 |
75
+ | BrowseComp-zh | 45.0 | 47.9 |
76
+ | SimpleQA | 96.8 | 97.1 |
77
+ | SWE Verified | 68.4 | 67.8 |
78
+ | SWE-bench Multilingual | 57.8 | 57.9 |
79
+ | Terminal-bench | 36.7 | 37.7 |
80
+
81
+
82
+
83
+ ## How to Run Locally
84
+
85
+ ### HuggingFace
86
+
87
+ We provide an updated inference demo code in the [inference](https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp/tree/main/inference) folder to help the community quickly get started with our model and understand its architectural details.
88
+
89
+ First convert huggingface model weights to the the format required by our inference demo. Set `MP` to match your available GPU count:
90
+ ```bash
91
+ cd inference
92
+ export EXPERTS=256
93
+ python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
94
+ ```
95
+
96
+ Launch the interactive chat interface and start exploring DeepSeek's capabilities:
97
+ ```bash
98
+ export CONFIG=config_671B_v3.2.json
99
+ torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive
100
+ ```
101
+
102
+ ### SGLang
103
+
104
+ #### Installation with Docker
105
+
106
+ ```
107
+ # H200
108
+ docker pull lmsysorg/sglang:dsv32
109
+
110
+ # MI350
111
+ docker pull lmsysorg/sglang:dsv32-rocm
112
+
113
+ # NPUs
114
+ docker pull lmsysorg/sglang:dsv32-a2
115
+ docker pull lmsysorg/sglang:dsv32-a3
116
+ ```
117
+
118
+ #### Launch Command
119
+ ```bash
120
+ python -m sglang.launch_server --model deepseek-ai/DeepSeek-V3.2-Exp --tp 8 --dp 8 --page-size 64
121
+ ```
122
+
123
+ ### vLLM
124
+
125
+ vLLM provides day-0 support of DeepSeek-V3.2-Exp. See the [recipes](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-V3_2-Exp.html) for up-to-date details.
126
+
127
+ ## Open-Source Kernels
128
+
129
+ For TileLang kernels with **better readability and research-purpose design**, please refer to [TileLang](https://github.com/tile-ai/tilelang/tree/main/examples/deepseek_v32).
130
+
131
+ For **high-performance CUDA kernels**, indexer logit kernels (including paged versions) are available in [DeepGEMM](https://github.com/deepseek-ai/DeepGEMM/pull/200). Sparse attention kernels are released in [FlashMLA](https://github.com/deepseek-ai/FlashMLA/pull/98).
132
+
133
+
134
+
135
+ ## License
136
+
137
+ This repository and the model weights are licensed under the [MIT License](LICENSE).
138
+
139
+ ## Citation
140
+
141
+ ```
142
+ @misc{deepseekai2024deepseekv32,
143
+ title={DeepSeek-V3.2-Exp: Boosting Long-Context Efficiency with DeepSeek Sparse Attention},
144
+ author={DeepSeek-AI},
145
+ year={2025},
146
+ }
147
+ ```
148
+
149
+ ## Contact
150
+
151
+ If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
assets/chat_template.jinja ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if not add_generation_prompt is defined %}
2
+ {% set add_generation_prompt = false %}
3
+ {% endif %}
4
+ {% if not thinking is defined %}
5
+ {% set thinking = false %}
6
+ {% endif %}
7
+ {% set ns = namespace(is_first=false, is_tool=false, system_prompt='', is_first_sp=true, is_last_user=false, is_only_sys=false, is_prefix=false) %}
8
+ {%- for message in messages %}
9
+ {%- if message['role'] == 'system' %}
10
+ {%- if ns.is_first_sp %}
11
+ {% set ns.system_prompt = ns.system_prompt + message['content'] %}
12
+ {% set ns.is_first_sp = false %}
13
+ {%- else %}
14
+ {% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}
15
+ {%- endif %}
16
+ {% set ns.is_only_sys = true %}
17
+ {%- endif %}
18
+ {%- endfor %}
19
+ {{ bos_token }}{{ ns.system_prompt }}
20
+ {%- for message in messages %}
21
+ {%- if message['role'] == 'user' %}
22
+ {%- set ns.is_tool = false -%}
23
+ {%- set ns.is_first = false -%}
24
+ {%- set ns.is_last_user = true -%}
25
+ {{'<|User|>' + message['content']}}
26
+ {%- endif %}
27
+ {%- if message['role'] == 'assistant' and message['tool_calls'] is defined and message['tool_calls'] is not none %}
28
+ {%- if ns.is_last_user or ns.is_only_sys %}
29
+ {{'<|Assistant|></think>'}}
30
+ {%- endif %}
31
+ {%- set ns.is_last_user = false -%}
32
+ {%- set ns.is_first = false %}
33
+ {%- set ns.is_tool = false -%}
34
+ {%- for tool in message['tool_calls'] %}
35
+ {%- if not ns.is_first %}
36
+ {%- if message['content'] is none %}
37
+ {{'<|tool▁calls▁begin|><|tool▁call▁begin|>'+ tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}
38
+ {%- else %}
39
+ {{message['content'] + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}
40
+ {%- endif %}
41
+ {%- set ns.is_first = true -%}
42
+ {%- else %}
43
+ {{'<|tool▁call▁begin|>'+ tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}
44
+ {%- endif %}
45
+ {%- endfor %}
46
+ {{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}
47
+ {%- endif %}
48
+ {%- if message['role'] == 'assistant' and (message['tool_calls'] is not defined or message['tool_calls'] is none) %}
49
+ {%- if ns.is_last_user %}
50
+ {{'<|Assistant|>'}}
51
+ {%- if message['prefix'] is defined and message['prefix'] and thinking %}
52
+ {{'<think>'}}
53
+ {%- else %}
54
+ {{'</think>'}}
55
+ {%- endif %}
56
+ {%- endif %}
57
+ {%- if message['prefix'] is defined and message['prefix'] %}
58
+ {%- set ns.is_prefix = true -%}
59
+ {%- endif %}
60
+ {%- set ns.is_last_user = false -%}
61
+ {%- if ns.is_tool %}
62
+ {{message['content'] + '<|end▁of▁sentence|>'}}
63
+ {%- set ns.is_tool = false -%}
64
+ {%- else %}
65
+ {%- set content = message['content'] -%}
66
+ {%- if '</think>' in content %}
67
+ {%- set content = content.split('</think>', 1)[1] -%}
68
+ {%- endif %}
69
+ {{content + '<|end▁of▁sentence|>'}}
70
+ {%- endif %}
71
+ {%- endif %}
72
+ {%- if message['role'] == 'tool' %}
73
+ {%- set ns.is_last_user = false -%}
74
+ {%- set ns.is_tool = true -%}
75
+ {{'<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}
76
+ {%- endif %}
77
+ {%- if message['role'] != 'system' %}
78
+ {% set ns.is_only_sys = false %}
79
+ {%- endif %}
80
+ {%- endfor -%}
81
+ {% if add_generation_prompt and not ns.is_tool%}
82
+ {% if ns.is_last_user or ns.is_only_sys or not ns.is_prefix %}
83
+ {{'<|Assistant|>'}}
84
+ {%- if not thinking %}
85
+ {{'</think>'}}
86
+ {%- else %}
87
+ {{'<think>'}}
88
+ {%- endif %}
89
+ {% endif %}
90
+ {% endif %}
assets/cost.png ADDED

Git LFS Details

  • SHA256: d4b8e78d9a3220108e480bb44383b03a0d8ccbf7fc41ac113c5e67f5d7c8a44d
  • Pointer size: 131 Bytes
  • Size of remote file: 102 kB
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV32ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 1,
9
+ "ep_size": 1,
10
+ "first_k_dense_replace": 3,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 7168,
13
+ "index_head_dim": 128,
14
+ "index_n_heads": 64,
15
+ "index_topk": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 18432,
18
+ "kv_lora_rank": 512,
19
+ "max_position_embeddings": 163840,
20
+ "model_type": "deepseek_v32",
21
+ "moe_intermediate_size": 2048,
22
+ "moe_layer_freq": 1,
23
+ "n_group": 8,
24
+ "n_routed_experts": 256,
25
+ "n_shared_experts": 1,
26
+ "norm_topk_prob": true,
27
+ "num_attention_heads": 128,
28
+ "num_experts_per_tok": 8,
29
+ "num_hidden_layers": 61,
30
+ "num_key_value_heads": 128,
31
+ "num_nextn_predict_layers": 1,
32
+ "q_lora_rank": 1536,
33
+ "qk_nope_head_dim": 128,
34
+ "qk_rope_head_dim": 64,
35
+ "quantization_config": {
36
+ "activation_scheme": "dynamic",
37
+ "fmt": "e4m3",
38
+ "quant_method": "fp8",
39
+ "scale_fmt": "ue8m0",
40
+ "weight_block_size": [
41
+ 128,
42
+ 128
43
+ ]
44
+ },
45
+ "rms_norm_eps": 1e-06,
46
+ "rope_scaling": {
47
+ "beta_fast": 32,
48
+ "beta_slow": 1,
49
+ "factor": 40,
50
+ "mscale": 1.0,
51
+ "mscale_all_dim": 1.0,
52
+ "original_max_position_embeddings": 4096,
53
+ "type": "yarn"
54
+ },
55
+ "rope_theta": 10000,
56
+ "routed_scaling_factor": 2.5,
57
+ "scoring_func": "sigmoid",
58
+ "tie_word_embeddings": false,
59
+ "topk_group": 4,
60
+ "topk_method": "noaux_tc",
61
+ "torch_dtype": "bfloat16",
62
+ "transformers_version": "4.44.2",
63
+ "use_cache": true,
64
+ "v_head_dim": 128,
65
+ "vocab_size": 129280
66
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "do_sample": true,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.46.3"
9
+ }
inference/README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DeepSeek V3.2
2
+
3
+ First convert huggingface model weights to the the format required by our inference demo. Set `MP` to match your available GPU count:
4
+ ```bash
5
+ cd inference
6
+ export EXPERTS=256
7
+ python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
8
+ ```
9
+
10
+ Launch the interactive chat interface and start exploring DeepSeek's capabilities:
11
+ ```bash
12
+ export CONFIG=config_671B_v3.2.json
13
+ torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive
14
+ ```
inference/config_671B_v3.2.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 129280,
3
+ "dim": 7168,
4
+ "inter_dim": 18432,
5
+ "moe_inter_dim": 2048,
6
+ "n_layers": 61,
7
+ "n_dense_layers": 3,
8
+ "n_heads": 128,
9
+ "n_routed_experts": 256,
10
+ "n_shared_experts": 1,
11
+ "n_activated_experts": 8,
12
+ "n_expert_groups": 8,
13
+ "n_limited_groups": 4,
14
+ "route_scale": 2.5,
15
+ "score_func": "sigmoid",
16
+ "q_lora_rank": 1536,
17
+ "kv_lora_rank": 512,
18
+ "qk_nope_head_dim": 128,
19
+ "qk_rope_head_dim": 64,
20
+ "v_head_dim": 128,
21
+ "dtype": "fp8",
22
+ "scale_fmt": "ue8m0",
23
+ "index_n_heads": 64,
24
+ "index_head_dim": 128,
25
+ "index_topk": 2048
26
+ }
inference/convert.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ from argparse import ArgumentParser
4
+ from glob import glob
5
+ from tqdm import tqdm, trange
6
+
7
+ import torch
8
+ from safetensors.torch import safe_open, save_file
9
+
10
+
11
+ mapping = {
12
+ "embed_tokens": ("embed", 0),
13
+ "input_layernorm": ("attn_norm", None),
14
+ "post_attention_layernorm": ("ffn_norm", None),
15
+ "q_proj": ("wq", 0),
16
+ "q_a_proj": ("wq_a", None),
17
+ "q_a_layernorm": ("q_norm", None),
18
+ "q_b_proj": ("wq_b", 0),
19
+ "kv_a_proj_with_mqa": ("wkv_a", None),
20
+ "kv_a_layernorm": ("kv_norm", None),
21
+ "kv_b_proj": ("wkv_b", 0),
22
+ "o_proj": ("wo", 1),
23
+ "gate": ("gate", None),
24
+ "gate_proj": ("w1", 0),
25
+ "down_proj": ("w2", 1),
26
+ "up_proj": ("w3", 0),
27
+ "norm": ("norm", None),
28
+ "lm_head": ("head", 0),
29
+ "scale": ("scale", None),
30
+ "wq_b": ("wq_b", None),
31
+ "wk": ("wk", None),
32
+ "k_norm": ("k_norm", None),
33
+ "weights_proj": ("weights_proj", None),
34
+ }
35
+
36
+
37
+ def main(hf_ckpt_path, save_path, n_experts, mp):
38
+ """
39
+ Converts and saves model checkpoint files into a specified format.
40
+
41
+ Args:
42
+ hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
43
+ save_path (str): Path to the directory where the converted checkpoint files will be saved.
44
+ n_experts (int): Total number of experts in the model.
45
+ mp (int): Model parallelism factor.
46
+
47
+ Returns:
48
+ None
49
+ """
50
+ torch.set_num_threads(8)
51
+ n_local_experts = n_experts // mp
52
+ state_dicts = [{} for _ in range(mp)]
53
+
54
+ for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
55
+ with safe_open(file_path, framework="pt", device="cpu") as f:
56
+ for name in f.keys():
57
+ if "model.layers.61" in name:
58
+ continue
59
+ param: torch.Tensor = f.get_tensor(name)
60
+ if name.startswith("model."):
61
+ name = name[len("model."):]
62
+ name = name.replace("self_attn", "attn")
63
+ name = name.replace("mlp", "ffn")
64
+ name = name.replace("weight_scale_inv", "scale")
65
+ name = name.replace("e_score_correction_bias", "bias")
66
+ key = name.split(".")[-2]
67
+ assert key in mapping, f"Key {key} not found in mapping"
68
+ new_key, dim = mapping[key]
69
+ name = name.replace(key, new_key)
70
+ for i in range(mp):
71
+ new_param = param
72
+ if "experts" in name and "shared_experts" not in name:
73
+ idx = int(name.split(".")[-3])
74
+ if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
75
+ continue
76
+ elif dim is not None:
77
+ assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
78
+ shard_size = param.size(dim) // mp
79
+ new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
80
+ state_dicts[i][name] = new_param
81
+
82
+ os.makedirs(save_path, exist_ok=True)
83
+
84
+ for i in trange(mp):
85
+ save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
86
+
87
+ for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
88
+ new_file_path = os.path.join(save_path, os.path.basename(file_path))
89
+ shutil.copyfile(file_path, new_file_path)
90
+
91
+
92
+ if __name__ == "__main__":
93
+ parser = ArgumentParser()
94
+ parser.add_argument("--hf-ckpt-path", type=str, required=True)
95
+ parser.add_argument("--save-path", type=str, required=True)
96
+ parser.add_argument("--n-experts", type=int, required=True)
97
+ parser.add_argument("--model-parallel", type=int, required=True)
98
+ args = parser.parse_args()
99
+ assert args.n_experts % args.model_parallel == 0, "Number of experts must be divisible by model parallelism"
100
+ main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
inference/generate.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from typing import List
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ from transformers import AutoTokenizer
9
+ from safetensors.torch import load_model
10
+
11
+ from model import Transformer, ModelArgs
12
+
13
+
14
+ def sample(logits, temperature: float = 1.0):
15
+ """
16
+ Samples a token from the logits using temperature scaling.
17
+
18
+ Args:
19
+ logits (torch.Tensor): The logits tensor for token predictions.
20
+ temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
21
+
22
+ Returns:
23
+ torch.Tensor: The sampled token.
24
+ """
25
+ logits = logits / max(temperature, 1e-5)
26
+ probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
27
+ return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
28
+
29
+
30
+ @torch.inference_mode()
31
+ def generate(
32
+ model: Transformer,
33
+ prompt_tokens: List[List[int]],
34
+ max_new_tokens: int,
35
+ eos_id: int,
36
+ temperature: float = 1.0
37
+ ) -> List[List[int]]:
38
+ """
39
+ Generates new tokens based on the given prompt tokens using the specified model.
40
+
41
+ Args:
42
+ model (Transformer): The transformer model used for token generation.
43
+ prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
44
+ max_new_tokens (int): The maximum number of new tokens to generate.
45
+ eos_id (int): The end-of-sequence token ID.
46
+ temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
47
+
48
+ Returns:
49
+ List[List[int]]: A list of lists containing the generated tokens for each sequence.
50
+ """
51
+ prompt_lens = [len(t) for t in prompt_tokens]
52
+ assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
53
+ total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
54
+ tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
55
+ for i, t in enumerate(prompt_tokens):
56
+ tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
57
+ prev_pos = 0
58
+ finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
59
+ prompt_mask = tokens != -1
60
+ for cur_pos in range(min(prompt_lens), total_len):
61
+ logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
62
+ if temperature > 0:
63
+ next_token = sample(logits, temperature)
64
+ else:
65
+ next_token = logits.argmax(dim=-1)
66
+ next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
67
+ tokens[:, cur_pos] = next_token
68
+ finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
69
+ prev_pos = cur_pos
70
+ if finished.all():
71
+ break
72
+ completion_tokens = []
73
+ for i, toks in enumerate(tokens.tolist()):
74
+ toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
75
+ if eos_id in toks:
76
+ toks = toks[:toks.index(eos_id)]
77
+ completion_tokens.append(toks)
78
+ return completion_tokens
79
+
80
+
81
+ def main(
82
+ ckpt_path: str,
83
+ config: str,
84
+ input_file: str = "",
85
+ interactive: bool = True,
86
+ max_new_tokens: int = 100,
87
+ temperature: float = 1.0,
88
+ ) -> None:
89
+ """
90
+ Main function to load the model and perform interactive or batch text generation.
91
+
92
+ Args:
93
+ ckpt_path (str): Path to the model checkpoint directory.
94
+ config (str): Path to the model configuration file.
95
+ input_file (str, optional): Path to a file containing input prompts. Defaults to "".
96
+ interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
97
+ max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
98
+ temperature (float, optional): Temperature for sampling. Defaults to 1.0.
99
+ """
100
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
101
+ rank = int(os.getenv("RANK", "0"))
102
+ local_rank = int(os.getenv("LOCAL_RANK", "0"))
103
+ if world_size > 1:
104
+ dist.init_process_group("nccl")
105
+ global print
106
+ if rank != 0:
107
+ print = lambda *_, **__: None
108
+ torch.cuda.set_device(local_rank)
109
+ torch.set_default_dtype(torch.bfloat16)
110
+ torch.set_num_threads(8)
111
+ torch.manual_seed(33377335)
112
+ with open(config) as f:
113
+ args = ModelArgs(**json.load(f))
114
+ print(args)
115
+ with torch.device("cuda"):
116
+ model = Transformer(args)
117
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
118
+ print("load model")
119
+ load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
120
+ print("I'm DeepSeek 👋")
121
+
122
+ if interactive:
123
+ messages = []
124
+ while True:
125
+ if world_size == 1:
126
+ prompt = input(">>> ")
127
+ elif rank == 0:
128
+ prompt = input(">>> ")
129
+ objects = [prompt]
130
+ dist.broadcast_object_list(objects, 0)
131
+ else:
132
+ objects = [None]
133
+ dist.broadcast_object_list(objects, 0)
134
+ prompt = objects[0]
135
+ if prompt == "/exit":
136
+ break
137
+ elif prompt == "/clear":
138
+ messages.clear()
139
+ continue
140
+ messages.append({"role": "user", "content": prompt})
141
+ prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
142
+ completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
143
+ completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
144
+ print(completion)
145
+ messages.append({"role": "assistant", "content": completion})
146
+ else:
147
+ with open(input_file) as f:
148
+ prompts = f.read().split("\n\n")
149
+ assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})"
150
+ prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
151
+ completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
152
+ completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
153
+ for prompt, completion in zip(prompts, completions):
154
+ print("Prompt:", prompt)
155
+ print("Completion:", completion)
156
+ print()
157
+
158
+ if world_size > 1:
159
+ dist.destroy_process_group()
160
+
161
+
162
+ if __name__ == "__main__":
163
+ """
164
+ Command-line interface for distributed text generation.
165
+
166
+ Arguments:
167
+ --ckpt-path (str): Path to the model checkpoint directory.
168
+ --config (str): Path to the model configuration file.
169
+ --input-file (str, optional): File containing prompts for batch processing.
170
+ --interactive (bool, optional): Enable interactive mode for generating text.
171
+ --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
172
+ --temperature (float, optional): Temperature for sampling. Defaults to 0.2.
173
+
174
+ Raises:
175
+ AssertionError: If neither input-file nor interactive mode is specified.
176
+ """
177
+ parser = ArgumentParser()
178
+ parser.add_argument("--ckpt-path", type=str, required=True)
179
+ parser.add_argument("--config", type=str, required=True)
180
+ parser.add_argument("--input-file", type=str, default="")
181
+ parser.add_argument("--interactive", action="store_true")
182
+ parser.add_argument("--max-new-tokens", type=int, default=200)
183
+ parser.add_argument("--temperature", type=float, default=0.6)
184
+ args = parser.parse_args()
185
+ assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
186
+ main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
inference/kernel.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import tilelang
3
+ import tilelang.language as T
4
+ from typing import Tuple, Optional
5
+
6
+
7
+ tilelang.set_log_level("WARNING")
8
+
9
+ pass_configs = {
10
+ tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
11
+ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
12
+ tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
13
+ }
14
+
15
+ FP8 = "float8_e4m3"
16
+ BF16 = "bfloat16"
17
+ FP32 = "float32"
18
+
19
+
20
+ def fast_log2_ceil(x):
21
+ bits_x = T.reinterpret("uint32", x)
22
+ exp_x = (bits_x >> 23) & 0xFF
23
+ man_bits = bits_x & ((1 << 23) - 1)
24
+ return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))
25
+
26
+
27
+ def fast_pow2(x):
28
+ bits_x = (x + 127) << 23
29
+ return T.reinterpret("float32", bits_x)
30
+
31
+
32
+ def fast_round_scale(amax, fp8_max_inv):
33
+ return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))
34
+
35
+
36
+ @tilelang.jit(pass_configs=pass_configs)
37
+ def act_quant_kernel(
38
+ N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
39
+ ):
40
+ M = T.symbolic("M")
41
+ fp8_min = -448.0
42
+ fp8_max = 448.0
43
+ fp8_max_inv = 1 / fp8_max
44
+ num_stages = 0 if round_scale else 2
45
+ blk_m = 32
46
+ group_size = 128
47
+
48
+ @T.prim_func
49
+ def act_quant_kernel_(
50
+ X: T.Tensor[(M, N), in_dtype],
51
+ Y: T.Tensor[(M, N), out_dtype],
52
+ S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
53
+ ):
54
+ with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
55
+ pid_m,
56
+ pid_n,
57
+ ):
58
+ x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
59
+ x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
60
+ amax_local = T.alloc_fragment((blk_m,), scale_dtype)
61
+ s_local = T.alloc_fragment((blk_m,), scale_dtype)
62
+ y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
63
+ y_shared = T.alloc_shared((blk_m, group_size), out_dtype)
64
+
65
+ for _ in T.Pipelined(1, num_stages=num_stages):
66
+ T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
67
+ T.copy(x_shared, x_local)
68
+ T.reduce_absmax(x_local, amax_local, dim=1)
69
+ for i in T.Parallel(blk_m):
70
+ amax_local[i] = T.max(amax_local[i], 1e-4)
71
+ if round_scale:
72
+ s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
73
+ else:
74
+ s_local[i] = amax_local[i] * fp8_max_inv
75
+ for i, j in T.Parallel(blk_m, group_size):
76
+ y_local[i, j] = T.clamp(
77
+ x_local[i, j] / s_local[i], fp8_min, fp8_max
78
+ )
79
+ for i in T.Parallel(blk_m):
80
+ S[pid_m * blk_m + i, pid_n] = s_local[i]
81
+ T.copy(y_local, y_shared)
82
+ T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])
83
+
84
+ return act_quant_kernel_
85
+
86
+
87
+ def act_quant(
88
+ x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
89
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
90
+ """
91
+ Quantizes the input tensor `x` using block-wise quantization.
92
+
93
+ Args:
94
+ x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
95
+ block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
96
+ scale_fmt (Optional[str], optional): The format of the scale. Default is None.
97
+ Returns:
98
+ Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
99
+ - The quantized tensor with dtype `torch.float8_e4m3fn`.
100
+ - A tensor of scaling factors with dtype `torch.float32`.
101
+ """
102
+ assert x.is_contiguous(), "Input tensor must be contiguous"
103
+ assert x.size(-1) % block_size == 0, (
104
+ f"Last dimension size must be divisible by block_size (block_size={block_size})"
105
+ )
106
+ N = x.size(-1)
107
+ y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
108
+ s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
109
+ kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
110
+ kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
111
+ return y, s
112
+
113
+
114
+ @tilelang.jit(pass_configs=pass_configs)
115
+ def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
116
+ assert out_dtype in [BF16, "float32"]
117
+
118
+ M = T.symbolic("M")
119
+ group_size = 128
120
+ block_M = 32
121
+ block_N = 128
122
+ block_K = 128
123
+
124
+ @T.prim_func
125
+ def fp8_gemm_kernel_(
126
+ A: T.Tensor[(M, K), FP8],
127
+ B: T.Tensor[(N, K), FP8],
128
+ C: T.Tensor[(M, N), out_dtype],
129
+ scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
130
+ scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
131
+ ):
132
+ with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
133
+ bx,
134
+ by,
135
+ ):
136
+ A_shared = T.alloc_shared((block_M, block_K), FP8)
137
+ B_shared = T.alloc_shared((block_N, block_K), FP8)
138
+ C_shared = T.alloc_shared((block_M, block_N), out_dtype)
139
+ Scale_C_shared = T.alloc_shared((block_M), FP32)
140
+ C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
141
+ C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)
142
+
143
+ # Improve L2 Cache
144
+ T.use_swizzle(panel_size=10)
145
+
146
+ T.clear(C_local)
147
+ T.clear(C_local_accum)
148
+ K_iters = T.ceildiv(K, block_K)
149
+ for k in T.Pipelined(K_iters, num_stages=4):
150
+ # Load A into shared memory
151
+ T.copy(A[by * block_M, k * block_K], A_shared)
152
+ # Load B into shared memory
153
+ T.copy(B[bx * block_N, k * block_K], B_shared)
154
+ # Load scale into shared memory
155
+ Scale_B = scales_b[bx * block_N // group_size, k]
156
+ for i in T.Parallel(block_M):
157
+ Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
158
+
159
+ T.gemm(A_shared, B_shared, C_local, transpose_B=True)
160
+ # Promote to enable 2xAcc
161
+ for i, j in T.Parallel(block_M, block_N):
162
+ C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
163
+ T.clear(C_local)
164
+ # TMA store
165
+ T.copy(C_local_accum, C_shared)
166
+ T.copy(C_shared, C[by * block_M, bx * block_N])
167
+
168
+ return fp8_gemm_kernel_
169
+
170
+
171
+ def fp8_gemm(
172
+ a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
173
+ ) -> torch.Tensor:
174
+ """
175
+ Perform a matrix multiplication using FP8 precision.
176
+
177
+ Args:
178
+ a (torch.Tensor): The first input matrix, must be contiguous.
179
+ a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
180
+ b (torch.Tensor): The second input matrix, must be contiguous.
181
+ b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
182
+
183
+ Returns:
184
+ torch.Tensor: The result of the matrix multiplication.
185
+ """
186
+ assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
187
+ assert a_s.is_contiguous() and b_s.is_contiguous(), (
188
+ "Scaling factor tensors must be contiguous"
189
+ )
190
+ K = a.size(-1)
191
+ M = a.numel() // K
192
+ N = b.size(0)
193
+ c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
194
+ kernel = fp8_gemm_kernel(N, K)
195
+ kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
196
+ return c
197
+
198
+
199
+ @tilelang.jit(out_idx=[4], pass_configs=pass_configs)
200
+ def fp8_index_kernel(h: int, d: int):
201
+ b = T.symbolic("b")
202
+ m = T.symbolic("m")
203
+ n = T.symbolic("n")
204
+
205
+ blk_n1 = 512
206
+ blk_n2 = 128
207
+
208
+ @T.prim_func
209
+ def fp8_index_kernel_(
210
+ q: T.Tensor[(b, m, h, d), FP8],
211
+ q_s: T.Tensor[(b, m, h), FP32],
212
+ k: T.Tensor[(b, n, d), FP8],
213
+ k_s: T.Tensor[(b, n), FP32],
214
+ o: T.Tensor[(b, m, n), FP32],
215
+ ) -> None:
216
+ with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n):
217
+ q_smem = T.alloc_shared((h, d), FP8)
218
+ T.copy(q[i_b, i_m, 0, 0], q_smem)
219
+
220
+ q_s_frag = T.alloc_fragment(h, FP32)
221
+ T.copy(q_s[i_b, i_m, 0], q_s_frag)
222
+
223
+ for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2):
224
+ k_smem = T.alloc_shared((blk_n2, d), FP8)
225
+ T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem)
226
+
227
+ k_s_frag = T.alloc_fragment(blk_n2, FP32)
228
+ T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag)
229
+
230
+ logits = T.alloc_fragment((blk_n2, h), FP32)
231
+ T.gemm(
232
+ k_smem,
233
+ q_smem,
234
+ logits,
235
+ transpose_A=False,
236
+ transpose_B=True,
237
+ clear_accum=True,
238
+ )
239
+
240
+ for i_h, i3_n in T.Parallel(h, blk_n2):
241
+ logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h]
242
+
243
+ logits_sum = T.alloc_fragment(blk_n2, FP32)
244
+ T.reduce_sum(logits, logits_sum, dim=1)
245
+
246
+ for i3_n in T.Parallel(blk_n2):
247
+ logits_sum[i3_n] *= k_s_frag[i3_n]
248
+
249
+ T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2])
250
+
251
+ return fp8_index_kernel_
252
+
253
+
254
+ def fp8_index(
255
+ q: torch.Tensor,
256
+ q_s: torch.Tensor,
257
+ k: torch.Tensor,
258
+ k_s: torch.Tensor,
259
+ ) -> torch.Tensor:
260
+ """
261
+ Perform index score using FP8 precision.
262
+
263
+ Args:
264
+ q (torch.Tensor): The Q tensor, must be contiguous.
265
+ q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous.
266
+ k (torch.Tensor): The K tensor, must be contiguous.
267
+ k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous.
268
+
269
+ fp8 q @ fp8 k -> fp32 logits
270
+ relu(fp32 logits) * q_s (weights) -> fp32 logits
271
+ fp32 logits -> fp32 logits_sum
272
+ fp32 logits_sum * k_s (e8m0) -> fp32 index_score
273
+ """
274
+ return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s)
inference/model.py ADDED
@@ -0,0 +1,912 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from dataclasses import dataclass
3
+ from typing import Tuple, Optional, Literal
4
+
5
+ from einops import rearrange
6
+ import torch
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+ import torch.distributed as dist
10
+
11
+ from kernel import act_quant, fp8_gemm, fp8_index
12
+
13
+
14
+ world_size = 1
15
+ rank = 0
16
+ block_size = 128
17
+
18
+ @dataclass
19
+ class ModelArgs:
20
+ """
21
+ Data class for defining model arguments and hyperparameters.
22
+
23
+ Attributes:
24
+ max_batch_size (int): Maximum batch size.
25
+ max_seq_len (int): Maximum sequence length.
26
+ dtype (Literal["bf16", "fp8"]): Data type for computations.
27
+ scale_fmt (Optional[str]): Format for quantization scale.
28
+ vocab_size (int): Vocabulary size.
29
+ dim (int): Model dimension.
30
+ inter_dim (int): Intermediate dimension for MLP layers.
31
+ moe_inter_dim (int): Intermediate dimension for MoE layers.
32
+ n_layers (int): Number of transformer layers.
33
+ n_dense_layers (int): Number of dense layers in the model.
34
+ n_heads (int): Number of attention heads.
35
+ n_routed_experts (int): Number of routed experts for MoE layers.
36
+ n_shared_experts (int): Number of shared experts for MoE layers.
37
+ n_activated_experts (int): Number of activated experts in MoE layers.
38
+ n_expert_groups (int): Number of expert groups.
39
+ n_limited_groups (int): Number of limited groups for MoE routing.
40
+ score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
41
+ route_scale (float): Scaling factor for routing scores.
42
+ q_lora_rank (int): LoRA rank for query projections.
43
+ kv_lora_rank (int): LoRA rank for key-value projections.
44
+ qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
45
+ qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
46
+ v_head_dim (int): Dimension for value projections.
47
+ original_seq_len (int): Original sequence length.
48
+ rope_theta (float): Base for rotary positional encoding.
49
+ rope_factor (float): Scaling factor for extended sequence lengths.
50
+ beta_fast (int): Fast beta correction factor.
51
+ beta_slow (int): Slow beta correction factor.
52
+ mscale (float): Scaling factor for extended attention.
53
+ index_head_dim (int): Dimension for index head.
54
+ index_topk (int): Top-k for index head.
55
+ """
56
+ max_batch_size: int = 8
57
+ max_seq_len: int = 4096 * 4
58
+ dtype: Literal["bf16", "fp8"] = "bf16"
59
+ scale_fmt: Optional[str] = None
60
+ vocab_size: int = 102400
61
+ dim: int = 2048
62
+ inter_dim: int = 10944
63
+ moe_inter_dim: int = 1408
64
+ n_layers: int = 27
65
+ n_dense_layers: int = 1
66
+ n_heads: int = 16
67
+ # moe
68
+ n_routed_experts: int = 64
69
+ n_shared_experts: int = 2
70
+ n_activated_experts: int = 6
71
+ n_expert_groups: int = 1
72
+ n_limited_groups: int = 1
73
+ score_func: Literal["softmax", "sigmoid"] = "softmax"
74
+ route_scale: float = 1.
75
+ # mla
76
+ q_lora_rank: int = 0
77
+ kv_lora_rank: int = 512
78
+ qk_nope_head_dim: int = 128
79
+ qk_rope_head_dim: int = 64
80
+ v_head_dim: int = 128
81
+ # yarn
82
+ original_seq_len: int = 4096
83
+ rope_theta: float = 10000.0
84
+ rope_factor: float = 40
85
+ beta_fast: int = 32
86
+ beta_slow: int = 1
87
+ mscale: float = 1.
88
+ # index
89
+ index_n_heads: int = 64
90
+ index_head_dim: int = 128
91
+ index_topk: int = 2048
92
+
93
+ class ParallelEmbedding(nn.Module):
94
+ """
95
+ Embedding layer with parallelism support across distributed processes.
96
+
97
+ Args:
98
+ vocab_size (int): Vocabulary size.
99
+ dim (int): Embedding dimension.
100
+ """
101
+ def __init__(self, vocab_size: int, dim: int):
102
+ super().__init__()
103
+ self.vocab_size = vocab_size
104
+ self.dim = dim
105
+ assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})"
106
+ self.part_vocab_size = (vocab_size // world_size)
107
+ self.vocab_start_idx = rank * self.part_vocab_size
108
+ self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
109
+ self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
110
+
111
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
112
+ """
113
+ Forward pass for parallel embedding layer.
114
+
115
+ Args:
116
+ x (torch.Tensor): Input tensor containing token indices.
117
+
118
+ Returns:
119
+ torch.Tensor: Embedded representations.
120
+
121
+ Raises:
122
+ ValueError: If `world_size` is not defined.
123
+ """
124
+ if world_size > 1:
125
+ mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
126
+ x = x - self.vocab_start_idx
127
+ x[mask] = 0
128
+ y = F.embedding(x, self.weight)
129
+ if world_size > 1:
130
+ y[mask] = 0
131
+ dist.all_reduce(y)
132
+ return y
133
+
134
+
135
+ def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None,
136
+ scale_fmt: Optional[str] = None) -> torch.Tensor:
137
+ """
138
+ Applies a linear transformation to the incoming data: y = xA^T + b.
139
+ This function supports specialized implementations based on quantization
140
+ and tensor formats.
141
+
142
+ Args:
143
+ x (torch.Tensor): The input tensor.
144
+ weight (torch.Tensor): The weight tensor. It may be quantized and
145
+ requires dequantization for certain cases.
146
+ bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
147
+ scale_fmt (Optional[str]): The format of scaling factors.
148
+
149
+ Returns:
150
+ torch.Tensor: The result of the linear transformation, which may involve
151
+ quantization-aware computations depending on the input parameters.
152
+
153
+ Notes:
154
+ - If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version
155
+ is used for computation.
156
+ - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
157
+ """
158
+ assert bias is None
159
+
160
+ if weight.dtype != torch.float8_e4m3fn:
161
+ return F.linear(x, weight)
162
+ else:
163
+ x, scale = act_quant(x, block_size, scale_fmt)
164
+ return fp8_gemm(x, scale, weight, weight.scale)
165
+
166
+
167
+ class Linear(nn.Module):
168
+ """
169
+ Custom linear layer with support for quantized weights and optional bias.
170
+
171
+ Args:
172
+ in_features (int): Number of input features.
173
+ out_features (int): Number of output features.
174
+ bias (bool): Whether to include a bias term. Defaults to False.
175
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
176
+ """
177
+ dtype = torch.bfloat16
178
+ scale_fmt: Optional[str] = None
179
+
180
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
181
+ super().__init__()
182
+ self.in_features = in_features
183
+ self.out_features = out_features
184
+ self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
185
+ if self.weight.element_size() == 1:
186
+ scale_out_features = (out_features + block_size - 1) // block_size
187
+ scale_in_features = (in_features + block_size - 1) // block_size
188
+ self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
189
+ else:
190
+ self.register_parameter("scale", None)
191
+ if bias:
192
+ self.bias = nn.Parameter(torch.empty(out_features))
193
+ else:
194
+ self.register_parameter("bias", None)
195
+
196
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
197
+ """
198
+ Forward pass for the custom linear layer.
199
+
200
+ Args:
201
+ x (torch.Tensor): Input tensor.
202
+
203
+ Returns:
204
+ torch.Tensor: Transformed tensor after linear computation.
205
+ """
206
+ return linear(x, self.weight, self.bias, self.scale_fmt)
207
+
208
+
209
+ class ColumnParallelLinear(Linear):
210
+ """
211
+ Linear layer with column parallelism, splitting output features across distributed processes.
212
+
213
+ Args:
214
+ in_features (int): Number of input features.
215
+ out_features (int): Total number of output features.
216
+ bias (bool): Whether to include a bias term. Defaults to False.
217
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
218
+ """
219
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
220
+ assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})"
221
+ self.part_out_features = out_features // world_size
222
+ super().__init__(in_features, self.part_out_features, bias, dtype)
223
+
224
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
225
+ """
226
+ Forward pass for column parallel linear layer.
227
+
228
+ Args:
229
+ x (torch.Tensor): Input tensor.
230
+
231
+ Returns:
232
+ torch.Tensor: Transformed tensor with column-parallel computation.
233
+ """
234
+ y = linear(x, self.weight, self.bias, self.scale_fmt)
235
+ return y
236
+
237
+
238
+ class RowParallelLinear(Linear):
239
+ """
240
+ Linear layer with row parallelism, splitting input features across distributed processes.
241
+
242
+ Args:
243
+ in_features (int): Total number of input features.
244
+ out_features (int): Number of output features.
245
+ bias (bool): Whether to include a bias term. Defaults to False.
246
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
247
+ """
248
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None):
249
+ assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})"
250
+ self.part_in_features = in_features // world_size
251
+ self.reduce_output = reduce_output
252
+ super().__init__(self.part_in_features, out_features, bias, dtype)
253
+
254
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
255
+ """
256
+ Forward pass for row parallel linear layer.
257
+
258
+ Args:
259
+ x (torch.Tensor): Input tensor.
260
+
261
+ Returns:
262
+ torch.Tensor: Transformed tensor with row-parallel computation.
263
+ """
264
+ y = linear(x, self.weight, None, self.scale_fmt)
265
+ if self.reduce_output and world_size > 1:
266
+ y = y.float()
267
+ dist.all_reduce(y)
268
+ if self.bias is not None:
269
+ y += self.bias
270
+ return y.type_as(x)
271
+
272
+
273
+ class RMSNorm(nn.Module):
274
+ """
275
+ Root Mean Square Layer Normalization (RMSNorm).
276
+
277
+ Args:
278
+ dim (int): Dimension of the input tensor.
279
+ eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
280
+ """
281
+ def __init__(self, dim: int, eps: float = 1e-6):
282
+ super().__init__()
283
+ self.dim = dim
284
+ self.eps = eps
285
+ self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
286
+
287
+ def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None):
288
+ """
289
+ Forward pass for RMSNorm.
290
+
291
+ Args:
292
+ x (torch.Tensor): Input tensor.
293
+
294
+ Returns:
295
+ torch.Tensor: Normalized tensor with the same shape as input.
296
+ """
297
+ dtype = x.dtype
298
+ if residual is None:
299
+ x = x.float()
300
+ var = x.pow(2).mean(-1, keepdim=True)
301
+ x = x * torch.rsqrt(var + self.eps)
302
+ return (self.weight * x).to(dtype)
303
+ else:
304
+ x = residual = x.float() + residual.float()
305
+ var = x.pow(2).mean(-1, keepdim=True)
306
+ x = x * torch.rsqrt(var + self.eps)
307
+ return (self.weight * x).to(dtype), residual.to(dtype)
308
+
309
+
310
+ class LayerNorm(nn.Module):
311
+ """
312
+ Layer Normalization.
313
+ """
314
+ def __init__(self, dim: int, eps: float = 1e-6):
315
+ super().__init__()
316
+ self.dim = dim
317
+ self.eps = eps
318
+ self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
319
+ self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
320
+
321
+ def forward(self, x: torch.Tensor):
322
+ return F.layer_norm(x.float(), (self.dim,), self.weight, self.bias, self.eps).type_as(x)
323
+
324
+
325
+ def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
326
+ """
327
+ Precomputes frequency-based complex exponential values for rotary positional embeddings.
328
+
329
+ Args:
330
+ args (ModelArgs): Model arguments containing positional embedding parameters.
331
+
332
+ Returns:
333
+ torch.Tensor: Precomputed complex exponential values for positional embeddings.
334
+ """
335
+ dim = args.qk_rope_head_dim
336
+ seqlen = args.max_seq_len
337
+ beta_fast = args.beta_fast
338
+ beta_slow = args.beta_slow
339
+ base = args.rope_theta
340
+ factor = args.rope_factor
341
+
342
+ def find_correction_dim(num_rotations, dim, base, max_seq_len):
343
+ """
344
+ Computes the correction dimension for a given number of rotations in the rotary positional embedding.
345
+
346
+ Args:
347
+ num_rotations (float): Number of rotations to compute the correction for.
348
+ dim (int): Dimensionality of the embedding space.
349
+ base (float): Base value for the exponential computation.
350
+ max_seq_len (int): Maximum sequence length.
351
+
352
+ Returns:
353
+ float: The correction dimension based on the input parameters.
354
+ """
355
+ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
356
+
357
+ def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
358
+ """
359
+ Computes the range of correction dimensions for rotary positional embeddings.
360
+
361
+ Args:
362
+ low_rot (float): Lower bound for the number of rotations.
363
+ high_rot (float): Upper bound for the number of rotations.
364
+ dim (int): Dimensionality of the embedding space.
365
+ base (float): Base value for the exponential computation.
366
+ max_seq_len (int): Maximum sequence length.
367
+
368
+ Returns:
369
+ Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
370
+ """
371
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
372
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
373
+ return max(low, 0), min(high, dim-1)
374
+
375
+ def linear_ramp_factor(min, max, dim):
376
+ """
377
+ Computes a linear ramp function used to smooth values between a minimum and maximum range.
378
+
379
+ Args:
380
+ min (float): Minimum value for the ramp function.
381
+ max (float): Maximum value for the ramp function.
382
+ dim (int): Dimensionality of the ramp tensor.
383
+
384
+ Returns:
385
+ torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
386
+ clamped to the range [0, 1].
387
+ """
388
+ if min == max:
389
+ max += 0.001
390
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
391
+ ramp_func = torch.clamp(linear_func, 0, 1)
392
+ return ramp_func
393
+
394
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
395
+ if seqlen > args.original_seq_len:
396
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
397
+ smooth = 1 - linear_ramp_factor(low, high, dim // 2)
398
+ freqs = freqs / factor * (1 - smooth) + freqs * smooth
399
+
400
+ t = torch.arange(seqlen)
401
+ freqs = torch.outer(t, freqs)
402
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
403
+ return freqs_cis
404
+
405
+
406
+ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
407
+ """
408
+ Applies rotary positional embeddings to the input tensor.
409
+
410
+ Args:
411
+ x (torch.Tensor): Input tensor with positional embeddings to be applied.
412
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
413
+
414
+ Returns:
415
+ torch.Tensor: Tensor with rotary embeddings applied.
416
+ """
417
+ dtype = x.dtype
418
+ x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
419
+ freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
420
+ y = torch.view_as_real(x * freqs_cis).flatten(3)
421
+ return y.to(dtype)
422
+
423
+
424
+ def rotate_activation(x: torch.Tensor) -> torch.Tensor:
425
+ assert x.dtype == torch.bfloat16
426
+ from fast_hadamard_transform import hadamard_transform
427
+ hidden_size = x.size(-1)
428
+ return hadamard_transform(x, scale=hidden_size ** -0.5)
429
+
430
+
431
+ class Indexer(torch.nn.Module):
432
+ def __init__(self, args: ModelArgs):
433
+ super().__init__()
434
+ self.dim: int = args.dim
435
+ self.n_heads: int = args.index_n_heads
436
+ self.n_local_heads = args.index_n_heads // world_size
437
+ self.head_dim: int = args.index_head_dim
438
+ self.rope_head_dim: int = args.qk_rope_head_dim
439
+ self.index_topk: int = args.index_topk
440
+ self.q_lora_rank: int = args.q_lora_rank
441
+ self.wq_b = Linear(self.q_lora_rank, self.n_heads * self.head_dim)
442
+ self.wk = Linear(self.dim, self.head_dim)
443
+ self.k_norm = LayerNorm(self.head_dim)
444
+ self.weights_proj = Linear(self.dim, self.n_heads, dtype=torch.get_default_dtype())
445
+ self.softmax_scale = self.head_dim ** -0.5
446
+ self.scale_fmt = args.scale_fmt
447
+
448
+ self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim, dtype=torch.float8_e4m3fn), persistent=False)
449
+ self.register_buffer("k_scale_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim // block_size, dtype=torch.float32), persistent=False)
450
+
451
+
452
+ def forward(self, x: torch.Tensor, qr: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
453
+ bsz, seqlen, _ = x.size()
454
+ end_pos = start_pos + seqlen
455
+ q = self.wq_b(qr)
456
+ q = rearrange(q, 'b s (h d) -> b s h d', d=self.head_dim)
457
+ q_pe, q_nope = torch.split(q, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
458
+ q_pe = apply_rotary_emb(q_pe, freqs_cis)
459
+ q = torch.cat([q_pe, q_nope], dim=-1)
460
+ k = self.wk(x)
461
+ k = self.k_norm(k)
462
+ k_pe, k_nope = torch.split(k, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
463
+ k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis).squeeze(2)
464
+ k = torch.cat([k_pe, k_nope], dim=-1)
465
+ q = rotate_activation(q)
466
+ k = rotate_activation(k)
467
+ q_fp8, q_scale = act_quant(q, block_size, self.scale_fmt)
468
+ k_fp8, k_scale = act_quant(k, block_size, self.scale_fmt)
469
+ self.k_cache[:bsz, start_pos:end_pos] = k_fp8
470
+ self.k_scale_cache[:bsz, start_pos:end_pos] = k_scale
471
+ weights = self.weights_proj(x) * self.n_heads ** -0.5
472
+ weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
473
+ index_score = fp8_index(q_fp8.contiguous(), weights, self.k_cache[:bsz, :end_pos].contiguous(), self.k_scale_cache[:bsz, :end_pos].contiguous())
474
+ if mask is not None:
475
+ index_score += mask
476
+ topk_indices = index_score.topk(min(self.index_topk, end_pos), dim=-1)[1]
477
+ topk_indices_ = topk_indices.clone()
478
+ dist.broadcast(topk_indices_, src=0)
479
+ assert torch.all(topk_indices == topk_indices_), f"{topk_indices=} {topk_indices_=}"
480
+ return topk_indices
481
+
482
+
483
+ def weight_dequant(weight, scale):
484
+ shape = weight.shape
485
+ assert weight.dim() == 2
486
+ weight = weight.view(shape[0] // block_size, block_size, shape[1] // block_size, block_size).transpose(1, 2).contiguous().view(-1, block_size * block_size)
487
+ weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(shape[0] // block_size, shape[1] // block_size, block_size, block_size).transpose(1, 2).contiguous().view(shape)
488
+ return weight
489
+
490
+
491
+ class MLA(nn.Module):
492
+ """
493
+ Multi-Head Latent Attention (MLA) Layer.
494
+
495
+ Attributes:
496
+ dim (int): Dimensionality of the input features.
497
+ n_heads (int): Number of attention heads.
498
+ n_local_heads (int): Number of local attention heads for distributed systems.
499
+ q_lora_rank (int): Rank for low-rank query projection.
500
+ kv_lora_rank (int): Rank for low-rank key/value projection.
501
+ qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
502
+ qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
503
+ qk_head_dim (int): Total dimensionality of query/key projections.
504
+ v_head_dim (int): Dimensionality of value projections.
505
+ softmax_scale (float): Scaling factor for softmax in attention computation.
506
+ """
507
+ def __init__(self, args: ModelArgs):
508
+ super().__init__()
509
+ self.dim = args.dim
510
+ self.n_heads = args.n_heads
511
+ self.n_local_heads = args.n_heads // world_size
512
+ self.q_lora_rank = args.q_lora_rank
513
+ self.kv_lora_rank = args.kv_lora_rank
514
+ self.qk_nope_head_dim = args.qk_nope_head_dim
515
+ self.qk_rope_head_dim = args.qk_rope_head_dim
516
+ self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
517
+ self.v_head_dim = args.v_head_dim
518
+
519
+ self.wq_a = Linear(self.dim, self.q_lora_rank)
520
+ self.q_norm = RMSNorm(self.q_lora_rank)
521
+ self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
522
+ self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
523
+ self.kv_norm = RMSNorm(self.kv_lora_rank)
524
+ self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
525
+ self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
526
+ self.softmax_scale = self.qk_head_dim ** -0.5
527
+ if args.max_seq_len > args.original_seq_len:
528
+ mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
529
+ self.softmax_scale = self.softmax_scale * mscale * mscale
530
+
531
+ self.indexer = Indexer(args)
532
+
533
+ self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
534
+ self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
535
+ self.dequant_wkv_b = None
536
+
537
+ def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
538
+ """
539
+ Forward pass for the Multi-Head Latent Attention (MLA) Layer.
540
+
541
+ Args:
542
+ x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
543
+ start_pos (int): Starting position in the sequence for caching.
544
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
545
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
546
+
547
+ Returns:
548
+ torch.Tensor: Output tensor with the same shape as the input.
549
+ """
550
+ bsz, seqlen, _ = x.size()
551
+ end_pos = start_pos + seqlen
552
+ qr = self.q_norm(self.wq_a(x))
553
+ q = self.wq_b(qr)
554
+ q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
555
+ q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
556
+ q_pe = apply_rotary_emb(q_pe, freqs_cis)
557
+ kv = self.wkv_a(x)
558
+ kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
559
+ kv = self.kv_norm(kv)
560
+ k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
561
+ self.kv_cache[:bsz, start_pos:end_pos] = kv
562
+ self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
563
+ if mask is not None: # MHA prefill
564
+ q = torch.cat([q_nope, q_pe], dim=-1)
565
+ kv = self.wkv_b(kv)
566
+ kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
567
+ k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
568
+ k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
569
+ scores = torch.einsum("bshd,bthd->bsht", q.float(), k.float()) * self.softmax_scale
570
+
571
+ # indexer
572
+ topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
573
+ index_mask = torch.full((bsz, seqlen, seqlen), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
574
+ index_mask += mask
575
+ scores += index_mask.unsqueeze(2)
576
+
577
+ scores = scores.softmax(dim=-1, dtype=torch.float32)
578
+ x = torch.einsum("bsht,bthd->bshd", scores.type_as(x), v)
579
+ else: # MHA decode
580
+ if self.dequant_wkv_b is None and self.wkv_b.scale is not None:
581
+ self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale)
582
+ wkv_b = self.wkv_b.weight if self.dequant_wkv_b is None else self.dequant_wkv_b
583
+ wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
584
+ q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
585
+ scores = (torch.einsum("bshc,btc->bsht", q_nope.float(), self.kv_cache[:bsz, :end_pos].float()) +
586
+ torch.einsum("bshr,btr->bsht", q_pe.float(), self.pe_cache[:bsz, :end_pos].float())) * self.softmax_scale
587
+
588
+ # indexer
589
+ topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
590
+ index_mask = torch.full((bsz, 1, end_pos), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
591
+ scores += index_mask.unsqueeze(2)
592
+
593
+ scores = scores.softmax(dim=-1, dtype=torch.float32)
594
+ x = torch.einsum("bsht,btc->bshc", scores.type_as(x), self.kv_cache[:bsz, :end_pos])
595
+ x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
596
+ x = self.wo(x.flatten(2))
597
+ return x
598
+
599
+
600
+ class MLP(nn.Module):
601
+ """
602
+ Multi-Layer Perceptron (MLP) used as a feed-forward layer.
603
+
604
+ Attributes:
605
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
606
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
607
+ w3 (nn.Module): Additional linear layer for feature transformation.
608
+ """
609
+ def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True):
610
+ """
611
+ Initializes the MLP layer.
612
+
613
+ Args:
614
+ dim (int): Input and output dimensionality.
615
+ inter_dim (int): Hidden layer dimensionality.
616
+ """
617
+ super().__init__()
618
+ self.w1 = ColumnParallelLinear(dim, inter_dim)
619
+ self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output)
620
+ self.w3 = ColumnParallelLinear(dim, inter_dim)
621
+
622
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
623
+ """
624
+ Forward pass for the MLP layer.
625
+
626
+ Args:
627
+ x (torch.Tensor): Input tensor.
628
+
629
+ Returns:
630
+ torch.Tensor: Output tensor after MLP computation.
631
+ """
632
+ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
633
+
634
+
635
+ class Gate(nn.Module):
636
+ """
637
+ Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
638
+
639
+ Attributes:
640
+ dim (int): Dimensionality of input features.
641
+ topk (int): Number of top experts activated for each input.
642
+ n_groups (int): Number of groups for routing.
643
+ topk_groups (int): Number of groups to route inputs to.
644
+ score_func (str): Scoring function ('softmax' or 'sigmoid').
645
+ route_scale (float): Scaling factor for routing weights.
646
+ weight (torch.nn.Parameter): Learnable weights for the gate.
647
+ bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
648
+ """
649
+ def __init__(self, args: ModelArgs):
650
+ """
651
+ Initializes the Gate module.
652
+
653
+ Args:
654
+ args (ModelArgs): Model arguments containing gating parameters.
655
+ """
656
+ super().__init__()
657
+ self.dim = args.dim
658
+ self.topk = args.n_activated_experts
659
+ self.n_groups = args.n_expert_groups
660
+ self.topk_groups = args.n_limited_groups
661
+ self.score_func = args.score_func
662
+ self.route_scale = args.route_scale
663
+ self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
664
+ self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None
665
+
666
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
667
+ """
668
+ Forward pass for the gating mechanism.
669
+
670
+ Args:
671
+ x (torch.Tensor): Input tensor.
672
+
673
+ Returns:
674
+ Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
675
+ """
676
+ scores = linear(x.float(), self.weight.float())
677
+ if self.score_func == "softmax":
678
+ scores = scores.softmax(dim=-1)
679
+ else:
680
+ scores = scores.sigmoid()
681
+ original_scores = scores
682
+ if self.bias is not None:
683
+ scores = scores + self.bias
684
+ if self.n_groups > 1:
685
+ scores = scores.view(x.size(0), self.n_groups, -1)
686
+ if self.bias is None:
687
+ group_scores = scores.amax(dim=-1)
688
+ else:
689
+ group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
690
+ indices = group_scores.topk(self.topk_groups, dim=-1)[1]
691
+ mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False)
692
+ scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1)
693
+ indices = scores.topk(self.topk, dim=-1)[1]
694
+ weights = original_scores.gather(1, indices)
695
+ if self.score_func == "sigmoid":
696
+ weights /= weights.sum(dim=-1, keepdim=True)
697
+ weights *= self.route_scale
698
+ return weights, indices
699
+
700
+
701
+ class Expert(nn.Module):
702
+ """
703
+ Expert layer for Mixture-of-Experts (MoE) models.
704
+
705
+ Attributes:
706
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
707
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
708
+ w3 (nn.Module): Additional linear layer for feature transformation.
709
+ """
710
+ def __init__(self, dim: int, inter_dim: int):
711
+ """
712
+ Initializes the Expert layer.
713
+
714
+ Args:
715
+ dim (int): Input and output dimensionality.
716
+ inter_dim (int): Hidden layer dimensionality.
717
+ """
718
+ super().__init__()
719
+ self.w1 = Linear(dim, inter_dim)
720
+ self.w2 = Linear(inter_dim, dim)
721
+ self.w3 = Linear(dim, inter_dim)
722
+
723
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
724
+ """
725
+ Forward pass for the Expert layer.
726
+
727
+ Args:
728
+ x (torch.Tensor): Input tensor.
729
+
730
+ Returns:
731
+ torch.Tensor: Output tensor after expert computation.
732
+ """
733
+ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
734
+
735
+
736
+ class MoE(nn.Module):
737
+ """
738
+ Mixture-of-Experts (MoE) module.
739
+
740
+ Attributes:
741
+ dim (int): Dimensionality of input features.
742
+ n_routed_experts (int): Total number of experts in the model.
743
+ n_local_experts (int): Number of experts handled locally in distributed systems.
744
+ n_activated_experts (int): Number of experts activated for each input.
745
+ gate (nn.Module): Gating mechanism to route inputs to experts.
746
+ experts (nn.ModuleList): List of expert modules.
747
+ shared_experts (nn.Module): Shared experts applied to all inputs.
748
+ """
749
+ def __init__(self, args: ModelArgs):
750
+ """
751
+ Initializes the MoE module.
752
+
753
+ Args:
754
+ args (ModelArgs): Model arguments containing MoE parameters.
755
+ """
756
+ super().__init__()
757
+ self.dim = args.dim
758
+ assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})"
759
+ self.n_routed_experts = args.n_routed_experts
760
+ self.n_local_experts = args.n_routed_experts // world_size
761
+ self.n_activated_experts = args.n_activated_experts
762
+ self.experts_start_idx = rank * self.n_local_experts
763
+ self.experts_end_idx = self.experts_start_idx + self.n_local_experts
764
+ self.gate = Gate(args)
765
+ self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
766
+ for i in range(self.n_routed_experts)])
767
+ self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False)
768
+
769
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
770
+ """
771
+ Forward pass for the MoE module.
772
+
773
+ Args:
774
+ x (torch.Tensor): Input tensor.
775
+
776
+ Returns:
777
+ torch.Tensor: Output tensor after expert routing and computation.
778
+ """
779
+ shape = x.size()
780
+ x = x.view(-1, self.dim)
781
+ weights, indices = self.gate(x)
782
+ y = torch.zeros_like(x, dtype=torch.float32)
783
+ counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
784
+ for i in range(self.experts_start_idx, self.experts_end_idx):
785
+ if counts[i] == 0:
786
+ continue
787
+ expert = self.experts[i]
788
+ idx, top = torch.where(indices == i)
789
+ y[idx] += expert(x[idx]) * weights[idx, top, None]
790
+ y += self.shared_experts(x)
791
+ if world_size > 1:
792
+ dist.all_reduce(y)
793
+ return y.type_as(x).view(shape)
794
+
795
+
796
+ class Block(nn.Module):
797
+ """
798
+ Transformer block combining attention and feed-forward layers.
799
+
800
+ Attributes:
801
+ attn (nn.Module): Attention layer (MLA).
802
+ ffn (nn.Module): Feed-forward network (MLP or MoE).
803
+ attn_norm (nn.Module): Layer normalization for attention.
804
+ ffn_norm (nn.Module): Layer normalization for feed-forward network.
805
+ """
806
+ def __init__(self, layer_id: int, args: ModelArgs):
807
+ """
808
+ Initializes the Transformer block.
809
+
810
+ Args:
811
+ layer_id (int): Layer index in the transformer.
812
+ args (ModelArgs): Model arguments containing block parameters.
813
+ """
814
+ super().__init__()
815
+ self.attn = MLA(args)
816
+ self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
817
+ self.attn_norm = RMSNorm(args.dim)
818
+ self.ffn_norm = RMSNorm(args.dim)
819
+
820
+ def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
821
+ """
822
+ Forward pass for the Transformer block.
823
+
824
+ Args:
825
+ x (torch.Tensor): Input tensor.
826
+ start_pos (int): Starting position in the sequence.
827
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
828
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
829
+
830
+ Returns:
831
+ torch.Tensor: Output tensor after block computation.
832
+ """
833
+ if residual is None:
834
+ x, residual = self.attn_norm(x), x
835
+ else:
836
+ x, residual = self.attn_norm(x, residual)
837
+ x = self.attn(x, start_pos, freqs_cis, mask)
838
+ x, residual = self.ffn_norm(x, residual)
839
+ x = self.ffn(x)
840
+ return x, residual
841
+
842
+
843
+ class Transformer(nn.Module):
844
+ """
845
+ Transformer model with positional embeddings, multiple layers, and output projection.
846
+
847
+ Attributes:
848
+ max_seq_len (int): Maximum sequence length for the transformer.
849
+ embed (nn.Module): Embedding layer for input tokens.
850
+ layers (torch.nn.ModuleList): List of transformer blocks.
851
+ norm (nn.Module): Layer normalization applied after all blocks.
852
+ head (nn.Module): Output projection layer mapping to vocabulary size.
853
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
854
+ """
855
+ def __init__(self, args: ModelArgs):
856
+ """
857
+ Initializes the Transformer model.
858
+
859
+ Args:
860
+ args (ModelArgs): Model arguments containing transformer parameters.
861
+ """
862
+ global world_size, rank
863
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
864
+ rank = dist.get_rank() if dist.is_initialized() else 0
865
+ Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
866
+ Linear.scale_fmt = args.scale_fmt
867
+ super().__init__()
868
+ self.max_seq_len = args.max_seq_len
869
+ self.embed = ParallelEmbedding(args.vocab_size, args.dim)
870
+ self.layers = torch.nn.ModuleList()
871
+ for layer_id in range(args.n_layers):
872
+ self.layers.append(Block(layer_id, args))
873
+ self.norm = RMSNorm(args.dim)
874
+ # lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later.
875
+ self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32)
876
+ self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
877
+
878
+ @torch.inference_mode()
879
+ def forward(self, tokens: torch.Tensor, start_pos: int = 0):
880
+ """
881
+ Forward pass for the Transformer model.
882
+
883
+ Args:
884
+ tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
885
+ start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
886
+
887
+ Returns:
888
+ torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
889
+ """
890
+ seqlen = tokens.size(1)
891
+ freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
892
+ mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None
893
+ h, residual = self.embed(tokens), None
894
+ for layer in self.layers:
895
+ h, residual = layer(h, residual, start_pos, freqs_cis, mask)
896
+ h, _ = self.norm(h, residual)
897
+ logits = self.head(h[:, -1].float())
898
+ if world_size > 1:
899
+ all_logits = [torch.empty_like(logits) for _ in range(world_size)]
900
+ dist.all_gather(all_logits, logits)
901
+ logits = torch.cat(all_logits, dim=-1)
902
+ return logits
903
+
904
+
905
+ if __name__ == "__main__":
906
+ torch.set_default_dtype(torch.bfloat16)
907
+ torch.set_default_device("cuda")
908
+ torch.manual_seed(0)
909
+ args = ModelArgs()
910
+ x = torch.randint(0, args.vocab_size, (2, 128))
911
+ model = Transformer(args)
912
+ print(model(x).size())
inference/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ safetensors
4
+ fast_hadamard_transform
5
+ tilelang==0.1.6
model-00001-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3c9fe7fe4356bee8a7b770b2f12f45e999de18ae40feba767bb5ea50c83c3d6
3
+ size 8603795312
model-00002-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6f85d58585fb46b70c5c999e89dcc208306a4f4595258a6959d06b8b9026ba5
3
+ size 8602553944
model-00003-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a249f1077f489e9d69a002aec7eddf3a6d86fced9ab89cd1e0dca67668ee16de
3
+ size 8602554152
model-00004-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00f18b3066f7889831fddd1e90f4bd574d45b56bdb0b0e5dc954cff2ac38969e
3
+ size 8597378736
model-00005-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f5c36af1f6988e791aa39c1ad3cc54fb538c240898850b9af8485fda86d8ff9
3
+ size 8602554040
model-00006-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f3508cb8f55ff14e3e1f9fd4d4c86ad67d654cf5f1cd11720fcf2c9830d174b
3
+ size 8612055008
model-00007-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44f85b4059cc265e9c9c60805f48596ef6b28548b1aa85be09bd15ee3ee87790
3
+ size 8617238032
model-00008-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40f35aaaac2acb95d21fcf7bf7f377c15eb30edb6bf8711bf839be5666a5f89b
3
+ size 8602554136
model-00009-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5393f8db8dc2287f5f828b82539a61bf1f9dea0f8774839710761eb1068e93a
3
+ size 8597378840
model-00010-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:488cb754966725e514ceaec46f11596fdce91f28ffa4c5afa17e3a2e24fd77cc
3
+ size 8602553936
model-00011-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed20b51d3a5c54d0662161c4c23b8d72b7b53fddd528a5a0e1b6b8b966ed693
3
+ size 8602554160
model-00012-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5058e80cf22ddb85f41eb4299579a984e3fe7fff304a1c0ce824d88cc2bc86c3
3
+ size 2965443072
model-00013-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d84dc8bf226db6741c0c996d36ec8e47dd4b626a39f3961e8d26e29862a48200
3
+ size 8597321080
model-00014-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e75d0105f4b96f94590fcd5e80731d785dea3a91a2f79b1561a15694a434a92
3
+ size 8602554128
model-00015-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6395ff0959cb4ad162a083df2b09253123c797176f8d279a720752d89026c70d
3
+ size 8597378840
model-00016-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd595142af1f538e70b431d2a086fc1d367fa677e2b032ceec69d1c5483b96e
3
+ size 8602553936
model-00017-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4feb53dbbabc2cf40edb3b426e88d293e4573ee635d8fd2ea91486f571a030ac
3
+ size 8602554152
model-00018-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3738057d5f601ebd7a299d6cc77d2d3b2f26da1d6e02d926672b8c9ed7b0fac1
3
+ size 8597378744
model-00019-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ee2cea9e337d6808ce819b148c7acf3c02897da9a28221b7b404750f366598f
3
+ size 8602554024
model-00020-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aaf4c86fee426e21acdc8c0b5636646cc5a8cc6a243602bc49c2199a003dca0
3
+ size 8602554160
model-00021-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15f4857d11bfd0db318f9dd36be510fb940a83c171f5793157f48797a2628144
3
+ size 8597378928
model-00022-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5486956847812a9784e2afd4c34a28006883583e385db0dfdc4e0d3ba62acb8a
3
+ size 8602554416
model-00023-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b05c19f7a22a374095e23d8b269b98db7e9f200dd1c1a1961838f5564f0b1608
3
+ size 8597379144
model-00024-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e098731b0c6dff28a590acee73fe94f277e398045c9b8f727b3cd8af0ee049d6
3
+ size 8602554216
model-00025-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc28a800f2dfef26f73151ae6bef87004d7457a2550a7e21324376ec6e14b2e4
3
+ size 8602554448
model-00026-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b354ece2e8d128ce37287caaed178b2f42653b9d99fd612508b166c54f33f932
3
+ size 8597379056
model-00027-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01d108f0c00a473ceba5037401e367d66d3551acf20180c5720ae3b648e8d15e
3
+ size 8602554312
model-00028-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6da12977756e946bdfe7492d3c4782071225ab87c4d9d52ca562c81dff65c2
3
+ size 8602554448
model-00029-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dc954f4f03aee16acd76d9a8986940684a173a60be151b28bea1172d5c2c963
3
+ size 8597378960
model-00030-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c4ff5e9833aa7c5c5580f0232fc081df267be242223e1afef0e5cc4461f290a
3
+ size 8602554408
model-00031-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b384aa0381ac314545cc62c3592c27ee8151ef71f1033405a6f1cd2dc73ea8b
3
+ size 8597379160
model-00032-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3261625fdc9efdefbfd5d0dd81fed918c2c1cfdc11996bfd5725ca0928c43f7
3
+ size 8602554200
model-00033-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a6627d40ce553d708b122ad2d242011c39eb2e343d6cab031bc4c1731ab43b
3
+ size 8602554448
model-00034-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef167d053b77dcb2a47a07ff95bd6a973a47e1c316f28d52d63e1c9a83b64fa3
3
+ size 3728809784
model-00035-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63dcff756973e745c5daffb2a44fdf8decc486aa50611bc7c113271b693e4306
3
+ size 8597321376
model-00036-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dd84887abc34b69bcde6c2b013bdf56e67925f0df1428be4d29eb888f641baf
3
+ size 8602554424