Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1017 -0
- config.json +66 -0
- config_sentence_transformers.json +16 -0
- custom_st.py +229 -0
- model.safetensors +3 -0
- modules.json +23 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- es
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:14907
|
| 11 |
+
- loss:MatryoshkaLoss
|
| 12 |
+
- loss:MultipleNegativesRankingLoss
|
| 13 |
+
base_model: jinaai/jina-embeddings-v3
|
| 14 |
+
widget:
|
| 15 |
+
- source_sentence: Describe la tradición del 'rosario de candiles' en el contexto
|
| 16 |
+
de la minería.
|
| 17 |
+
sentences:
|
| 18 |
+
- Un mechazo es la combustión de la mecha sin que se llegue a inflamar el barreno.
|
| 19 |
+
- La siega tradicional en Escucha comenzaba antes de San Juan con las cebadas.
|
| 20 |
+
- El 'rosario de candiles' es una tradición religiosa celebrada en la festividad
|
| 21 |
+
de San Juan, en la que los mineros escuchan y acompañan con sus candiles de carburo,
|
| 22 |
+
rezando a dos coros y cantando en parte.
|
| 23 |
+
- source_sentence: ¿Qué significa la expresión 'pillar una mojadina'?
|
| 24 |
+
sentences:
|
| 25 |
+
- En el campeonato provincial de atletismo en Alcorisa en mayo, Pilar Brumos de
|
| 26 |
+
Escucha logró la 3ª posición en 600 metros y el subcampeonato en peso.
|
| 27 |
+
- Los empresarios de Escucha se habían unido para poder participar en las elecciones
|
| 28 |
+
a CC.PP. ya que era necesario que la plantilla de la empresa superase el número
|
| 29 |
+
de 50 trabajadores..
|
| 30 |
+
- '''Pillar una mojadina'' significa empaparse, quedar empapado.'
|
| 31 |
+
- source_sentence: ¿En qué año Carbones de Teruel registra la mina 'pablo' en Escucha?
|
| 32 |
+
sentences:
|
| 33 |
+
- Puede referirse a un calcetín para bebés o a un calcetín gordo.
|
| 34 |
+
- Carbones de Teruel registra la mina 'pablo' en Escucha en 1900.
|
| 35 |
+
- 'Jesús Conesa explicó a la Junta de Espectáculos que el anterior propietario,
|
| 36 |
+
Sr. Latorre Galindo, tenía otro cine en Utrillas, lo que causaba continuos equívocos
|
| 37 |
+
en envíos de material y pagos, al creerse que ambos cines le pertenecían o eran
|
| 38 |
+
la misma empresa. '
|
| 39 |
+
- source_sentence: ¿Quién regentaba el Cine Avenida de Escucha en el momento de su
|
| 40 |
+
cierre?
|
| 41 |
+
sentences:
|
| 42 |
+
- Se usa con el significado de 'cuando'.
|
| 43 |
+
- El CD Escucha alineó a Castillo, Romero, Bobadilla, Moraleda, Luis, González,
|
| 44 |
+
Higinio, Torres, Calomarde I, Calomarde II y Navarro en el partido de Copa contra
|
| 45 |
+
el Alcorisa.
|
| 46 |
+
- Antonio Malpica regentaba el Cine Avenida de Escucha en el momento de su cierre.
|
| 47 |
+
- source_sentence: ¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero
|
| 48 |
+
en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de
|
| 49 |
+
1930?
|
| 50 |
+
sentences:
|
| 51 |
+
- Antonio Gargallo.
|
| 52 |
+
- Una publicación con una fotografía para el recuerdo de la locomotora llamada 'Escucha'.
|
| 53 |
+
- El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de
|
| 54 |
+
Utrillas.
|
| 55 |
+
pipeline_tag: sentence-similarity
|
| 56 |
+
library_name: sentence-transformers
|
| 57 |
+
metrics:
|
| 58 |
+
- cosine_accuracy@1
|
| 59 |
+
- cosine_accuracy@3
|
| 60 |
+
- cosine_accuracy@5
|
| 61 |
+
- cosine_accuracy@10
|
| 62 |
+
- cosine_precision@1
|
| 63 |
+
- cosine_precision@3
|
| 64 |
+
- cosine_precision@5
|
| 65 |
+
- cosine_precision@10
|
| 66 |
+
- cosine_recall@1
|
| 67 |
+
- cosine_recall@3
|
| 68 |
+
- cosine_recall@5
|
| 69 |
+
- cosine_recall@10
|
| 70 |
+
- cosine_ndcg@10
|
| 71 |
+
- cosine_mrr@10
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
model-index:
|
| 74 |
+
- name: Lampistero
|
| 75 |
+
results:
|
| 76 |
+
- task:
|
| 77 |
+
type: information-retrieval
|
| 78 |
+
name: Information Retrieval
|
| 79 |
+
dataset:
|
| 80 |
+
name: dim 1024
|
| 81 |
+
type: dim_1024
|
| 82 |
+
metrics:
|
| 83 |
+
- type: cosine_accuracy@1
|
| 84 |
+
value: 0.771876885938443
|
| 85 |
+
name: Cosine Accuracy@1
|
| 86 |
+
- type: cosine_accuracy@3
|
| 87 |
+
value: 0.8931804465902233
|
| 88 |
+
name: Cosine Accuracy@3
|
| 89 |
+
- type: cosine_accuracy@5
|
| 90 |
+
value: 0.9136994568497284
|
| 91 |
+
name: Cosine Accuracy@5
|
| 92 |
+
- type: cosine_accuracy@10
|
| 93 |
+
value: 0.928183464091732
|
| 94 |
+
name: Cosine Accuracy@10
|
| 95 |
+
- type: cosine_precision@1
|
| 96 |
+
value: 0.771876885938443
|
| 97 |
+
name: Cosine Precision@1
|
| 98 |
+
- type: cosine_precision@3
|
| 99 |
+
value: 0.2977268155300744
|
| 100 |
+
name: Cosine Precision@3
|
| 101 |
+
- type: cosine_precision@5
|
| 102 |
+
value: 0.18273989136994565
|
| 103 |
+
name: Cosine Precision@5
|
| 104 |
+
- type: cosine_precision@10
|
| 105 |
+
value: 0.0928183464091732
|
| 106 |
+
name: Cosine Precision@10
|
| 107 |
+
- type: cosine_recall@1
|
| 108 |
+
value: 0.771876885938443
|
| 109 |
+
name: Cosine Recall@1
|
| 110 |
+
- type: cosine_recall@3
|
| 111 |
+
value: 0.8931804465902233
|
| 112 |
+
name: Cosine Recall@3
|
| 113 |
+
- type: cosine_recall@5
|
| 114 |
+
value: 0.9136994568497284
|
| 115 |
+
name: Cosine Recall@5
|
| 116 |
+
- type: cosine_recall@10
|
| 117 |
+
value: 0.928183464091732
|
| 118 |
+
name: Cosine Recall@10
|
| 119 |
+
- type: cosine_ndcg@10
|
| 120 |
+
value: 0.8567624282543636
|
| 121 |
+
name: Cosine Ndcg@10
|
| 122 |
+
- type: cosine_mrr@10
|
| 123 |
+
value: 0.8330754087996087
|
| 124 |
+
name: Cosine Mrr@10
|
| 125 |
+
- type: cosine_map@100
|
| 126 |
+
value: 0.8344062726339423
|
| 127 |
+
name: Cosine Map@100
|
| 128 |
+
- task:
|
| 129 |
+
type: information-retrieval
|
| 130 |
+
name: Information Retrieval
|
| 131 |
+
dataset:
|
| 132 |
+
name: dim 768
|
| 133 |
+
type: dim_768
|
| 134 |
+
metrics:
|
| 135 |
+
- type: cosine_accuracy@1
|
| 136 |
+
value: 0.7706698853349426
|
| 137 |
+
name: Cosine Accuracy@1
|
| 138 |
+
- type: cosine_accuracy@3
|
| 139 |
+
value: 0.8925769462884732
|
| 140 |
+
name: Cosine Accuracy@3
|
| 141 |
+
- type: cosine_accuracy@5
|
| 142 |
+
value: 0.9118889559444779
|
| 143 |
+
name: Cosine Accuracy@5
|
| 144 |
+
- type: cosine_accuracy@10
|
| 145 |
+
value: 0.9287869643934822
|
| 146 |
+
name: Cosine Accuracy@10
|
| 147 |
+
- type: cosine_precision@1
|
| 148 |
+
value: 0.7706698853349426
|
| 149 |
+
name: Cosine Precision@1
|
| 150 |
+
- type: cosine_precision@3
|
| 151 |
+
value: 0.2975256487628244
|
| 152 |
+
name: Cosine Precision@3
|
| 153 |
+
- type: cosine_precision@5
|
| 154 |
+
value: 0.18237779118889558
|
| 155 |
+
name: Cosine Precision@5
|
| 156 |
+
- type: cosine_precision@10
|
| 157 |
+
value: 0.09287869643934822
|
| 158 |
+
name: Cosine Precision@10
|
| 159 |
+
- type: cosine_recall@1
|
| 160 |
+
value: 0.7706698853349426
|
| 161 |
+
name: Cosine Recall@1
|
| 162 |
+
- type: cosine_recall@3
|
| 163 |
+
value: 0.8925769462884732
|
| 164 |
+
name: Cosine Recall@3
|
| 165 |
+
- type: cosine_recall@5
|
| 166 |
+
value: 0.9118889559444779
|
| 167 |
+
name: Cosine Recall@5
|
| 168 |
+
- type: cosine_recall@10
|
| 169 |
+
value: 0.9287869643934822
|
| 170 |
+
name: Cosine Recall@10
|
| 171 |
+
- type: cosine_ndcg@10
|
| 172 |
+
value: 0.8563506024476554
|
| 173 |
+
name: Cosine Ndcg@10
|
| 174 |
+
- type: cosine_mrr@10
|
| 175 |
+
value: 0.8323629431655981
|
| 176 |
+
name: Cosine Mrr@10
|
| 177 |
+
- type: cosine_map@100
|
| 178 |
+
value: 0.8335898787409641
|
| 179 |
+
name: Cosine Map@100
|
| 180 |
+
- task:
|
| 181 |
+
type: information-retrieval
|
| 182 |
+
name: Information Retrieval
|
| 183 |
+
dataset:
|
| 184 |
+
name: dim 512
|
| 185 |
+
type: dim_512
|
| 186 |
+
metrics:
|
| 187 |
+
- type: cosine_accuracy@1
|
| 188 |
+
value: 0.7682558841279421
|
| 189 |
+
name: Cosine Accuracy@1
|
| 190 |
+
- type: cosine_accuracy@3
|
| 191 |
+
value: 0.891973445986723
|
| 192 |
+
name: Cosine Accuracy@3
|
| 193 |
+
- type: cosine_accuracy@5
|
| 194 |
+
value: 0.9106819553409776
|
| 195 |
+
name: Cosine Accuracy@5
|
| 196 |
+
- type: cosine_accuracy@10
|
| 197 |
+
value: 0.9299939649969825
|
| 198 |
+
name: Cosine Accuracy@10
|
| 199 |
+
- type: cosine_precision@1
|
| 200 |
+
value: 0.7682558841279421
|
| 201 |
+
name: Cosine Precision@1
|
| 202 |
+
- type: cosine_precision@3
|
| 203 |
+
value: 0.2973244819955743
|
| 204 |
+
name: Cosine Precision@3
|
| 205 |
+
- type: cosine_precision@5
|
| 206 |
+
value: 0.1821363910681955
|
| 207 |
+
name: Cosine Precision@5
|
| 208 |
+
- type: cosine_precision@10
|
| 209 |
+
value: 0.09299939649969825
|
| 210 |
+
name: Cosine Precision@10
|
| 211 |
+
- type: cosine_recall@1
|
| 212 |
+
value: 0.7682558841279421
|
| 213 |
+
name: Cosine Recall@1
|
| 214 |
+
- type: cosine_recall@3
|
| 215 |
+
value: 0.891973445986723
|
| 216 |
+
name: Cosine Recall@3
|
| 217 |
+
- type: cosine_recall@5
|
| 218 |
+
value: 0.9106819553409776
|
| 219 |
+
name: Cosine Recall@5
|
| 220 |
+
- type: cosine_recall@10
|
| 221 |
+
value: 0.9299939649969825
|
| 222 |
+
name: Cosine Recall@10
|
| 223 |
+
- type: cosine_ndcg@10
|
| 224 |
+
value: 0.8553875428985249
|
| 225 |
+
name: Cosine Ndcg@10
|
| 226 |
+
- type: cosine_mrr@10
|
| 227 |
+
value: 0.8307586381967789
|
| 228 |
+
name: Cosine Mrr@10
|
| 229 |
+
- type: cosine_map@100
|
| 230 |
+
value: 0.8318464309684749
|
| 231 |
+
name: Cosine Map@100
|
| 232 |
+
- task:
|
| 233 |
+
type: information-retrieval
|
| 234 |
+
name: Information Retrieval
|
| 235 |
+
dataset:
|
| 236 |
+
name: dim 256
|
| 237 |
+
type: dim_256
|
| 238 |
+
metrics:
|
| 239 |
+
- type: cosine_accuracy@1
|
| 240 |
+
value: 0.7646348823174411
|
| 241 |
+
name: Cosine Accuracy@1
|
| 242 |
+
- type: cosine_accuracy@3
|
| 243 |
+
value: 0.8883524441762221
|
| 244 |
+
name: Cosine Accuracy@3
|
| 245 |
+
- type: cosine_accuracy@5
|
| 246 |
+
value: 0.9058539529269765
|
| 247 |
+
name: Cosine Accuracy@5
|
| 248 |
+
- type: cosine_accuracy@10
|
| 249 |
+
value: 0.9251659625829813
|
| 250 |
+
name: Cosine Accuracy@10
|
| 251 |
+
- type: cosine_precision@1
|
| 252 |
+
value: 0.7646348823174411
|
| 253 |
+
name: Cosine Precision@1
|
| 254 |
+
- type: cosine_precision@3
|
| 255 |
+
value: 0.296117481392074
|
| 256 |
+
name: Cosine Precision@3
|
| 257 |
+
- type: cosine_precision@5
|
| 258 |
+
value: 0.18117079058539529
|
| 259 |
+
name: Cosine Precision@5
|
| 260 |
+
- type: cosine_precision@10
|
| 261 |
+
value: 0.09251659625829814
|
| 262 |
+
name: Cosine Precision@10
|
| 263 |
+
- type: cosine_recall@1
|
| 264 |
+
value: 0.7646348823174411
|
| 265 |
+
name: Cosine Recall@1
|
| 266 |
+
- type: cosine_recall@3
|
| 267 |
+
value: 0.8883524441762221
|
| 268 |
+
name: Cosine Recall@3
|
| 269 |
+
- type: cosine_recall@5
|
| 270 |
+
value: 0.9058539529269765
|
| 271 |
+
name: Cosine Recall@5
|
| 272 |
+
- type: cosine_recall@10
|
| 273 |
+
value: 0.9251659625829813
|
| 274 |
+
name: Cosine Recall@10
|
| 275 |
+
- type: cosine_ndcg@10
|
| 276 |
+
value: 0.8515592939892533
|
| 277 |
+
name: Cosine Ndcg@10
|
| 278 |
+
- type: cosine_mrr@10
|
| 279 |
+
value: 0.827186251688363
|
| 280 |
+
name: Cosine Mrr@10
|
| 281 |
+
- type: cosine_map@100
|
| 282 |
+
value: 0.8285316886087458
|
| 283 |
+
name: Cosine Map@100
|
| 284 |
+
- task:
|
| 285 |
+
type: information-retrieval
|
| 286 |
+
name: Information Retrieval
|
| 287 |
+
dataset:
|
| 288 |
+
name: dim 128
|
| 289 |
+
type: dim_128
|
| 290 |
+
metrics:
|
| 291 |
+
- type: cosine_accuracy@1
|
| 292 |
+
value: 0.7531683765841883
|
| 293 |
+
name: Cosine Accuracy@1
|
| 294 |
+
- type: cosine_accuracy@3
|
| 295 |
+
value: 0.8774894387447194
|
| 296 |
+
name: Cosine Accuracy@3
|
| 297 |
+
- type: cosine_accuracy@5
|
| 298 |
+
value: 0.8968014484007242
|
| 299 |
+
name: Cosine Accuracy@5
|
| 300 |
+
- type: cosine_accuracy@10
|
| 301 |
+
value: 0.9161134580567291
|
| 302 |
+
name: Cosine Accuracy@10
|
| 303 |
+
- type: cosine_precision@1
|
| 304 |
+
value: 0.7531683765841883
|
| 305 |
+
name: Cosine Precision@1
|
| 306 |
+
- type: cosine_precision@3
|
| 307 |
+
value: 0.2924964795815731
|
| 308 |
+
name: Cosine Precision@3
|
| 309 |
+
- type: cosine_precision@5
|
| 310 |
+
value: 0.17936028968014484
|
| 311 |
+
name: Cosine Precision@5
|
| 312 |
+
- type: cosine_precision@10
|
| 313 |
+
value: 0.09161134580567289
|
| 314 |
+
name: Cosine Precision@10
|
| 315 |
+
- type: cosine_recall@1
|
| 316 |
+
value: 0.7531683765841883
|
| 317 |
+
name: Cosine Recall@1
|
| 318 |
+
- type: cosine_recall@3
|
| 319 |
+
value: 0.8774894387447194
|
| 320 |
+
name: Cosine Recall@3
|
| 321 |
+
- type: cosine_recall@5
|
| 322 |
+
value: 0.8968014484007242
|
| 323 |
+
name: Cosine Recall@5
|
| 324 |
+
- type: cosine_recall@10
|
| 325 |
+
value: 0.9161134580567291
|
| 326 |
+
name: Cosine Recall@10
|
| 327 |
+
- type: cosine_ndcg@10
|
| 328 |
+
value: 0.8412352149980756
|
| 329 |
+
name: Cosine Ndcg@10
|
| 330 |
+
- type: cosine_mrr@10
|
| 331 |
+
value: 0.8165177074652028
|
| 332 |
+
name: Cosine Mrr@10
|
| 333 |
+
- type: cosine_map@100
|
| 334 |
+
value: 0.8182055440879425
|
| 335 |
+
name: Cosine Map@100
|
| 336 |
+
- task:
|
| 337 |
+
type: information-retrieval
|
| 338 |
+
name: Information Retrieval
|
| 339 |
+
dataset:
|
| 340 |
+
name: dim 64
|
| 341 |
+
type: dim_64
|
| 342 |
+
metrics:
|
| 343 |
+
- type: cosine_accuracy@1
|
| 344 |
+
value: 0.7109233554616777
|
| 345 |
+
name: Cosine Accuracy@1
|
| 346 |
+
- type: cosine_accuracy@3
|
| 347 |
+
value: 0.8503319251659626
|
| 348 |
+
name: Cosine Accuracy@3
|
| 349 |
+
- type: cosine_accuracy@5
|
| 350 |
+
value: 0.8750754375377188
|
| 351 |
+
name: Cosine Accuracy@5
|
| 352 |
+
- type: cosine_accuracy@10
|
| 353 |
+
value: 0.8974049487024743
|
| 354 |
+
name: Cosine Accuracy@10
|
| 355 |
+
- type: cosine_precision@1
|
| 356 |
+
value: 0.7109233554616777
|
| 357 |
+
name: Cosine Precision@1
|
| 358 |
+
- type: cosine_precision@3
|
| 359 |
+
value: 0.2834439750553209
|
| 360 |
+
name: Cosine Precision@3
|
| 361 |
+
- type: cosine_precision@5
|
| 362 |
+
value: 0.17501508750754374
|
| 363 |
+
name: Cosine Precision@5
|
| 364 |
+
- type: cosine_precision@10
|
| 365 |
+
value: 0.08974049487024743
|
| 366 |
+
name: Cosine Precision@10
|
| 367 |
+
- type: cosine_recall@1
|
| 368 |
+
value: 0.7109233554616777
|
| 369 |
+
name: Cosine Recall@1
|
| 370 |
+
- type: cosine_recall@3
|
| 371 |
+
value: 0.8503319251659626
|
| 372 |
+
name: Cosine Recall@3
|
| 373 |
+
- type: cosine_recall@5
|
| 374 |
+
value: 0.8750754375377188
|
| 375 |
+
name: Cosine Recall@5
|
| 376 |
+
- type: cosine_recall@10
|
| 377 |
+
value: 0.8974049487024743
|
| 378 |
+
name: Cosine Recall@10
|
| 379 |
+
- type: cosine_ndcg@10
|
| 380 |
+
value: 0.8110786488208866
|
| 381 |
+
name: Cosine Ndcg@10
|
| 382 |
+
- type: cosine_mrr@10
|
| 383 |
+
value: 0.7826713988753816
|
| 384 |
+
name: Cosine Mrr@10
|
| 385 |
+
- type: cosine_map@100
|
| 386 |
+
value: 0.7847527919142971
|
| 387 |
+
name: Cosine Map@100
|
| 388 |
+
---
|
| 389 |
+
|
| 390 |
+
# Lampistero
|
| 391 |
+
|
| 392 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 393 |
+
|
| 394 |
+
## Model Details
|
| 395 |
+
|
| 396 |
+
### Model Description
|
| 397 |
+
- **Model Type:** Sentence Transformer
|
| 398 |
+
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
|
| 399 |
+
- **Maximum Sequence Length:** 8194 tokens
|
| 400 |
+
- **Output Dimensionality:** 1024 dimensions
|
| 401 |
+
- **Similarity Function:** Cosine Similarity
|
| 402 |
+
- **Training Dataset:**
|
| 403 |
+
- json
|
| 404 |
+
- **Language:** es
|
| 405 |
+
- **License:** apache-2.0
|
| 406 |
+
|
| 407 |
+
### Model Sources
|
| 408 |
+
|
| 409 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 410 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 411 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 412 |
+
|
| 413 |
+
### Full Model Architecture
|
| 414 |
+
|
| 415 |
+
```
|
| 416 |
+
SentenceTransformer(
|
| 417 |
+
(transformer): Transformer(
|
| 418 |
+
(auto_model): XLMRobertaLoRA(
|
| 419 |
+
(roberta): XLMRobertaModel(
|
| 420 |
+
(embeddings): XLMRobertaEmbeddings(
|
| 421 |
+
(word_embeddings): ParametrizedEmbedding(
|
| 422 |
+
250002, 1024, padding_idx=1
|
| 423 |
+
(parametrizations): ModuleDict(
|
| 424 |
+
(weight): ParametrizationList(
|
| 425 |
+
(0): LoRAParametrization()
|
| 426 |
+
)
|
| 427 |
+
)
|
| 428 |
+
)
|
| 429 |
+
(token_type_embeddings): ParametrizedEmbedding(
|
| 430 |
+
1, 1024
|
| 431 |
+
(parametrizations): ModuleDict(
|
| 432 |
+
(weight): ParametrizationList(
|
| 433 |
+
(0): LoRAParametrization()
|
| 434 |
+
)
|
| 435 |
+
)
|
| 436 |
+
)
|
| 437 |
+
)
|
| 438 |
+
(emb_drop): Dropout(p=0.1, inplace=False)
|
| 439 |
+
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 440 |
+
(encoder): XLMRobertaEncoder(
|
| 441 |
+
(layers): ModuleList(
|
| 442 |
+
(0-23): 24 x Block(
|
| 443 |
+
(mixer): MHA(
|
| 444 |
+
(rotary_emb): RotaryEmbedding()
|
| 445 |
+
(Wqkv): ParametrizedLinearResidual(
|
| 446 |
+
in_features=1024, out_features=3072, bias=True
|
| 447 |
+
(parametrizations): ModuleDict(
|
| 448 |
+
(weight): ParametrizationList(
|
| 449 |
+
(0): LoRAParametrization()
|
| 450 |
+
)
|
| 451 |
+
)
|
| 452 |
+
)
|
| 453 |
+
(inner_attn): FlashSelfAttention(
|
| 454 |
+
(drop): Dropout(p=0.1, inplace=False)
|
| 455 |
+
)
|
| 456 |
+
(inner_cross_attn): FlashCrossAttention(
|
| 457 |
+
(drop): Dropout(p=0.1, inplace=False)
|
| 458 |
+
)
|
| 459 |
+
(out_proj): ParametrizedLinear(
|
| 460 |
+
in_features=1024, out_features=1024, bias=True
|
| 461 |
+
(parametrizations): ModuleDict(
|
| 462 |
+
(weight): ParametrizationList(
|
| 463 |
+
(0): LoRAParametrization()
|
| 464 |
+
)
|
| 465 |
+
)
|
| 466 |
+
)
|
| 467 |
+
)
|
| 468 |
+
(dropout1): Dropout(p=0.1, inplace=False)
|
| 469 |
+
(drop_path1): StochasticDepth(p=0.0, mode=row)
|
| 470 |
+
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 471 |
+
(mlp): Mlp(
|
| 472 |
+
(fc1): ParametrizedLinear(
|
| 473 |
+
in_features=1024, out_features=4096, bias=True
|
| 474 |
+
(parametrizations): ModuleDict(
|
| 475 |
+
(weight): ParametrizationList(
|
| 476 |
+
(0): LoRAParametrization()
|
| 477 |
+
)
|
| 478 |
+
)
|
| 479 |
+
)
|
| 480 |
+
(fc2): ParametrizedLinear(
|
| 481 |
+
in_features=4096, out_features=1024, bias=True
|
| 482 |
+
(parametrizations): ModuleDict(
|
| 483 |
+
(weight): ParametrizationList(
|
| 484 |
+
(0): LoRAParametrization()
|
| 485 |
+
)
|
| 486 |
+
)
|
| 487 |
+
)
|
| 488 |
+
)
|
| 489 |
+
(dropout2): Dropout(p=0.1, inplace=False)
|
| 490 |
+
(drop_path2): StochasticDepth(p=0.0, mode=row)
|
| 491 |
+
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 492 |
+
)
|
| 493 |
+
)
|
| 494 |
+
)
|
| 495 |
+
(pooler): XLMRobertaPooler(
|
| 496 |
+
(dense): ParametrizedLinear(
|
| 497 |
+
in_features=1024, out_features=1024, bias=True
|
| 498 |
+
(parametrizations): ModuleDict(
|
| 499 |
+
(weight): ParametrizationList(
|
| 500 |
+
(0): LoRAParametrization()
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
)
|
| 504 |
+
(activation): Tanh()
|
| 505 |
+
)
|
| 506 |
+
)
|
| 507 |
+
)
|
| 508 |
+
)
|
| 509 |
+
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 510 |
+
(normalizer): Normalize()
|
| 511 |
+
)
|
| 512 |
+
```
|
| 513 |
+
|
| 514 |
+
## Usage
|
| 515 |
+
|
| 516 |
+
### Direct Usage (Sentence Transformers)
|
| 517 |
+
|
| 518 |
+
First install the Sentence Transformers library:
|
| 519 |
+
|
| 520 |
+
```bash
|
| 521 |
+
pip install -U sentence-transformers
|
| 522 |
+
```
|
| 523 |
+
|
| 524 |
+
Then you can load this model and run inference.
|
| 525 |
+
```python
|
| 526 |
+
from sentence_transformers import SentenceTransformer
|
| 527 |
+
|
| 528 |
+
# Download from the 🤗 Hub
|
| 529 |
+
model = SentenceTransformer("csanz91/lampistero_rag_embeddings")
|
| 530 |
+
# Run inference
|
| 531 |
+
sentences = [
|
| 532 |
+
'¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?',
|
| 533 |
+
'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.',
|
| 534 |
+
'Antonio Gargallo.',
|
| 535 |
+
]
|
| 536 |
+
embeddings = model.encode(sentences)
|
| 537 |
+
print(embeddings.shape)
|
| 538 |
+
# [3, 1024]
|
| 539 |
+
|
| 540 |
+
# Get the similarity scores for the embeddings
|
| 541 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 542 |
+
print(similarities.shape)
|
| 543 |
+
# [3, 3]
|
| 544 |
+
```
|
| 545 |
+
|
| 546 |
+
<!--
|
| 547 |
+
### Direct Usage (Transformers)
|
| 548 |
+
|
| 549 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 550 |
+
|
| 551 |
+
</details>
|
| 552 |
+
-->
|
| 553 |
+
|
| 554 |
+
<!--
|
| 555 |
+
### Downstream Usage (Sentence Transformers)
|
| 556 |
+
|
| 557 |
+
You can finetune this model on your own dataset.
|
| 558 |
+
|
| 559 |
+
<details><summary>Click to expand</summary>
|
| 560 |
+
|
| 561 |
+
</details>
|
| 562 |
+
-->
|
| 563 |
+
|
| 564 |
+
<!--
|
| 565 |
+
### Out-of-Scope Use
|
| 566 |
+
|
| 567 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 568 |
+
-->
|
| 569 |
+
|
| 570 |
+
## Evaluation
|
| 571 |
+
|
| 572 |
+
### Metrics
|
| 573 |
+
|
| 574 |
+
#### Information Retrieval
|
| 575 |
+
|
| 576 |
+
* Dataset: `dim_1024`
|
| 577 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 578 |
+
```json
|
| 579 |
+
{
|
| 580 |
+
"truncate_dim": 1024
|
| 581 |
+
}
|
| 582 |
+
```
|
| 583 |
+
|
| 584 |
+
| Metric | Value |
|
| 585 |
+
|:--------------------|:-----------|
|
| 586 |
+
| cosine_accuracy@1 | 0.7719 |
|
| 587 |
+
| cosine_accuracy@3 | 0.8932 |
|
| 588 |
+
| cosine_accuracy@5 | 0.9137 |
|
| 589 |
+
| cosine_accuracy@10 | 0.9282 |
|
| 590 |
+
| cosine_precision@1 | 0.7719 |
|
| 591 |
+
| cosine_precision@3 | 0.2977 |
|
| 592 |
+
| cosine_precision@5 | 0.1827 |
|
| 593 |
+
| cosine_precision@10 | 0.0928 |
|
| 594 |
+
| cosine_recall@1 | 0.7719 |
|
| 595 |
+
| cosine_recall@3 | 0.8932 |
|
| 596 |
+
| cosine_recall@5 | 0.9137 |
|
| 597 |
+
| cosine_recall@10 | 0.9282 |
|
| 598 |
+
| **cosine_ndcg@10** | **0.8568** |
|
| 599 |
+
| cosine_mrr@10 | 0.8331 |
|
| 600 |
+
| cosine_map@100 | 0.8344 |
|
| 601 |
+
|
| 602 |
+
#### Information Retrieval
|
| 603 |
+
|
| 604 |
+
* Dataset: `dim_768`
|
| 605 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 606 |
+
```json
|
| 607 |
+
{
|
| 608 |
+
"truncate_dim": 768
|
| 609 |
+
}
|
| 610 |
+
```
|
| 611 |
+
|
| 612 |
+
| Metric | Value |
|
| 613 |
+
|:--------------------|:-----------|
|
| 614 |
+
| cosine_accuracy@1 | 0.7707 |
|
| 615 |
+
| cosine_accuracy@3 | 0.8926 |
|
| 616 |
+
| cosine_accuracy@5 | 0.9119 |
|
| 617 |
+
| cosine_accuracy@10 | 0.9288 |
|
| 618 |
+
| cosine_precision@1 | 0.7707 |
|
| 619 |
+
| cosine_precision@3 | 0.2975 |
|
| 620 |
+
| cosine_precision@5 | 0.1824 |
|
| 621 |
+
| cosine_precision@10 | 0.0929 |
|
| 622 |
+
| cosine_recall@1 | 0.7707 |
|
| 623 |
+
| cosine_recall@3 | 0.8926 |
|
| 624 |
+
| cosine_recall@5 | 0.9119 |
|
| 625 |
+
| cosine_recall@10 | 0.9288 |
|
| 626 |
+
| **cosine_ndcg@10** | **0.8564** |
|
| 627 |
+
| cosine_mrr@10 | 0.8324 |
|
| 628 |
+
| cosine_map@100 | 0.8336 |
|
| 629 |
+
|
| 630 |
+
#### Information Retrieval
|
| 631 |
+
|
| 632 |
+
* Dataset: `dim_512`
|
| 633 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 634 |
+
```json
|
| 635 |
+
{
|
| 636 |
+
"truncate_dim": 512
|
| 637 |
+
}
|
| 638 |
+
```
|
| 639 |
+
|
| 640 |
+
| Metric | Value |
|
| 641 |
+
|:--------------------|:-----------|
|
| 642 |
+
| cosine_accuracy@1 | 0.7683 |
|
| 643 |
+
| cosine_accuracy@3 | 0.892 |
|
| 644 |
+
| cosine_accuracy@5 | 0.9107 |
|
| 645 |
+
| cosine_accuracy@10 | 0.93 |
|
| 646 |
+
| cosine_precision@1 | 0.7683 |
|
| 647 |
+
| cosine_precision@3 | 0.2973 |
|
| 648 |
+
| cosine_precision@5 | 0.1821 |
|
| 649 |
+
| cosine_precision@10 | 0.093 |
|
| 650 |
+
| cosine_recall@1 | 0.7683 |
|
| 651 |
+
| cosine_recall@3 | 0.892 |
|
| 652 |
+
| cosine_recall@5 | 0.9107 |
|
| 653 |
+
| cosine_recall@10 | 0.93 |
|
| 654 |
+
| **cosine_ndcg@10** | **0.8554** |
|
| 655 |
+
| cosine_mrr@10 | 0.8308 |
|
| 656 |
+
| cosine_map@100 | 0.8318 |
|
| 657 |
+
|
| 658 |
+
#### Information Retrieval
|
| 659 |
+
|
| 660 |
+
* Dataset: `dim_256`
|
| 661 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 662 |
+
```json
|
| 663 |
+
{
|
| 664 |
+
"truncate_dim": 256
|
| 665 |
+
}
|
| 666 |
+
```
|
| 667 |
+
|
| 668 |
+
| Metric | Value |
|
| 669 |
+
|:--------------------|:-----------|
|
| 670 |
+
| cosine_accuracy@1 | 0.7646 |
|
| 671 |
+
| cosine_accuracy@3 | 0.8884 |
|
| 672 |
+
| cosine_accuracy@5 | 0.9059 |
|
| 673 |
+
| cosine_accuracy@10 | 0.9252 |
|
| 674 |
+
| cosine_precision@1 | 0.7646 |
|
| 675 |
+
| cosine_precision@3 | 0.2961 |
|
| 676 |
+
| cosine_precision@5 | 0.1812 |
|
| 677 |
+
| cosine_precision@10 | 0.0925 |
|
| 678 |
+
| cosine_recall@1 | 0.7646 |
|
| 679 |
+
| cosine_recall@3 | 0.8884 |
|
| 680 |
+
| cosine_recall@5 | 0.9059 |
|
| 681 |
+
| cosine_recall@10 | 0.9252 |
|
| 682 |
+
| **cosine_ndcg@10** | **0.8516** |
|
| 683 |
+
| cosine_mrr@10 | 0.8272 |
|
| 684 |
+
| cosine_map@100 | 0.8285 |
|
| 685 |
+
|
| 686 |
+
#### Information Retrieval
|
| 687 |
+
|
| 688 |
+
* Dataset: `dim_128`
|
| 689 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 690 |
+
```json
|
| 691 |
+
{
|
| 692 |
+
"truncate_dim": 128
|
| 693 |
+
}
|
| 694 |
+
```
|
| 695 |
+
|
| 696 |
+
| Metric | Value |
|
| 697 |
+
|:--------------------|:-----------|
|
| 698 |
+
| cosine_accuracy@1 | 0.7532 |
|
| 699 |
+
| cosine_accuracy@3 | 0.8775 |
|
| 700 |
+
| cosine_accuracy@5 | 0.8968 |
|
| 701 |
+
| cosine_accuracy@10 | 0.9161 |
|
| 702 |
+
| cosine_precision@1 | 0.7532 |
|
| 703 |
+
| cosine_precision@3 | 0.2925 |
|
| 704 |
+
| cosine_precision@5 | 0.1794 |
|
| 705 |
+
| cosine_precision@10 | 0.0916 |
|
| 706 |
+
| cosine_recall@1 | 0.7532 |
|
| 707 |
+
| cosine_recall@3 | 0.8775 |
|
| 708 |
+
| cosine_recall@5 | 0.8968 |
|
| 709 |
+
| cosine_recall@10 | 0.9161 |
|
| 710 |
+
| **cosine_ndcg@10** | **0.8412** |
|
| 711 |
+
| cosine_mrr@10 | 0.8165 |
|
| 712 |
+
| cosine_map@100 | 0.8182 |
|
| 713 |
+
|
| 714 |
+
#### Information Retrieval
|
| 715 |
+
|
| 716 |
+
* Dataset: `dim_64`
|
| 717 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
|
| 718 |
+
```json
|
| 719 |
+
{
|
| 720 |
+
"truncate_dim": 64
|
| 721 |
+
}
|
| 722 |
+
```
|
| 723 |
+
|
| 724 |
+
| Metric | Value |
|
| 725 |
+
|:--------------------|:-----------|
|
| 726 |
+
| cosine_accuracy@1 | 0.7109 |
|
| 727 |
+
| cosine_accuracy@3 | 0.8503 |
|
| 728 |
+
| cosine_accuracy@5 | 0.8751 |
|
| 729 |
+
| cosine_accuracy@10 | 0.8974 |
|
| 730 |
+
| cosine_precision@1 | 0.7109 |
|
| 731 |
+
| cosine_precision@3 | 0.2834 |
|
| 732 |
+
| cosine_precision@5 | 0.175 |
|
| 733 |
+
| cosine_precision@10 | 0.0897 |
|
| 734 |
+
| cosine_recall@1 | 0.7109 |
|
| 735 |
+
| cosine_recall@3 | 0.8503 |
|
| 736 |
+
| cosine_recall@5 | 0.8751 |
|
| 737 |
+
| cosine_recall@10 | 0.8974 |
|
| 738 |
+
| **cosine_ndcg@10** | **0.8111** |
|
| 739 |
+
| cosine_mrr@10 | 0.7827 |
|
| 740 |
+
| cosine_map@100 | 0.7848 |
|
| 741 |
+
|
| 742 |
+
<!--
|
| 743 |
+
## Bias, Risks and Limitations
|
| 744 |
+
|
| 745 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 746 |
+
-->
|
| 747 |
+
|
| 748 |
+
<!--
|
| 749 |
+
### Recommendations
|
| 750 |
+
|
| 751 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 752 |
+
-->
|
| 753 |
+
|
| 754 |
+
## Training Details
|
| 755 |
+
|
| 756 |
+
### Training Dataset
|
| 757 |
+
|
| 758 |
+
#### json
|
| 759 |
+
|
| 760 |
+
* Dataset: json
|
| 761 |
+
* Size: 14,907 training samples
|
| 762 |
+
* Columns: <code>query</code> and <code>answer</code>
|
| 763 |
+
* Approximate statistics based on the first 1000 samples:
|
| 764 |
+
| | query | answer |
|
| 765 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 766 |
+
| type | string | string |
|
| 767 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 25.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 34.09 tokens</li><li>max: 340 tokens</li></ul> |
|
| 768 |
+
* Samples:
|
| 769 |
+
| query | answer |
|
| 770 |
+
|:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
|
| 771 |
+
| <code>En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952?</code> | <code>En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores.</code> |
|
| 772 |
+
| <code>¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952?</code> | <code>En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo).</code> |
|
| 773 |
+
| <code>En el contexto de la minería, ¿qué implica 'despajar'?</code> | <code>'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos.</code> |
|
| 774 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 775 |
+
```json
|
| 776 |
+
{
|
| 777 |
+
"loss": "MultipleNegativesRankingLoss",
|
| 778 |
+
"matryoshka_dims": [
|
| 779 |
+
1024,
|
| 780 |
+
768,
|
| 781 |
+
512,
|
| 782 |
+
256,
|
| 783 |
+
128,
|
| 784 |
+
64
|
| 785 |
+
],
|
| 786 |
+
"matryoshka_weights": [
|
| 787 |
+
1,
|
| 788 |
+
1,
|
| 789 |
+
1,
|
| 790 |
+
1,
|
| 791 |
+
1,
|
| 792 |
+
1
|
| 793 |
+
],
|
| 794 |
+
"n_dims_per_step": -1
|
| 795 |
+
}
|
| 796 |
+
```
|
| 797 |
+
|
| 798 |
+
### Training Hyperparameters
|
| 799 |
+
#### Non-Default Hyperparameters
|
| 800 |
+
|
| 801 |
+
- `eval_strategy`: epoch
|
| 802 |
+
- `per_device_train_batch_size`: 32
|
| 803 |
+
- `per_device_eval_batch_size`: 16
|
| 804 |
+
- `gradient_accumulation_steps`: 16
|
| 805 |
+
- `learning_rate`: 2e-05
|
| 806 |
+
- `num_train_epochs`: 4
|
| 807 |
+
- `lr_scheduler_type`: cosine
|
| 808 |
+
- `warmup_ratio`: 0.1
|
| 809 |
+
- `tf32`: True
|
| 810 |
+
- `load_best_model_at_end`: True
|
| 811 |
+
- `optim`: adamw_torch_fused
|
| 812 |
+
- `batch_sampler`: no_duplicates
|
| 813 |
+
|
| 814 |
+
#### All Hyperparameters
|
| 815 |
+
<details><summary>Click to expand</summary>
|
| 816 |
+
|
| 817 |
+
- `overwrite_output_dir`: False
|
| 818 |
+
- `do_predict`: False
|
| 819 |
+
- `eval_strategy`: epoch
|
| 820 |
+
- `prediction_loss_only`: True
|
| 821 |
+
- `per_device_train_batch_size`: 32
|
| 822 |
+
- `per_device_eval_batch_size`: 16
|
| 823 |
+
- `per_gpu_train_batch_size`: None
|
| 824 |
+
- `per_gpu_eval_batch_size`: None
|
| 825 |
+
- `gradient_accumulation_steps`: 16
|
| 826 |
+
- `eval_accumulation_steps`: None
|
| 827 |
+
- `torch_empty_cache_steps`: None
|
| 828 |
+
- `learning_rate`: 2e-05
|
| 829 |
+
- `weight_decay`: 0.0
|
| 830 |
+
- `adam_beta1`: 0.9
|
| 831 |
+
- `adam_beta2`: 0.999
|
| 832 |
+
- `adam_epsilon`: 1e-08
|
| 833 |
+
- `max_grad_norm`: 1.0
|
| 834 |
+
- `num_train_epochs`: 4
|
| 835 |
+
- `max_steps`: -1
|
| 836 |
+
- `lr_scheduler_type`: cosine
|
| 837 |
+
- `lr_scheduler_kwargs`: {}
|
| 838 |
+
- `warmup_ratio`: 0.1
|
| 839 |
+
- `warmup_steps`: 0
|
| 840 |
+
- `log_level`: passive
|
| 841 |
+
- `log_level_replica`: warning
|
| 842 |
+
- `log_on_each_node`: True
|
| 843 |
+
- `logging_nan_inf_filter`: True
|
| 844 |
+
- `save_safetensors`: True
|
| 845 |
+
- `save_on_each_node`: False
|
| 846 |
+
- `save_only_model`: False
|
| 847 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 848 |
+
- `no_cuda`: False
|
| 849 |
+
- `use_cpu`: False
|
| 850 |
+
- `use_mps_device`: False
|
| 851 |
+
- `seed`: 42
|
| 852 |
+
- `data_seed`: None
|
| 853 |
+
- `jit_mode_eval`: False
|
| 854 |
+
- `use_ipex`: False
|
| 855 |
+
- `bf16`: False
|
| 856 |
+
- `fp16`: False
|
| 857 |
+
- `fp16_opt_level`: O1
|
| 858 |
+
- `half_precision_backend`: auto
|
| 859 |
+
- `bf16_full_eval`: False
|
| 860 |
+
- `fp16_full_eval`: False
|
| 861 |
+
- `tf32`: True
|
| 862 |
+
- `local_rank`: 0
|
| 863 |
+
- `ddp_backend`: None
|
| 864 |
+
- `tpu_num_cores`: None
|
| 865 |
+
- `tpu_metrics_debug`: False
|
| 866 |
+
- `debug`: []
|
| 867 |
+
- `dataloader_drop_last`: False
|
| 868 |
+
- `dataloader_num_workers`: 0
|
| 869 |
+
- `dataloader_prefetch_factor`: None
|
| 870 |
+
- `past_index`: -1
|
| 871 |
+
- `disable_tqdm`: False
|
| 872 |
+
- `remove_unused_columns`: True
|
| 873 |
+
- `label_names`: None
|
| 874 |
+
- `load_best_model_at_end`: True
|
| 875 |
+
- `ignore_data_skip`: False
|
| 876 |
+
- `fsdp`: []
|
| 877 |
+
- `fsdp_min_num_params`: 0
|
| 878 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 879 |
+
- `tp_size`: 0
|
| 880 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 881 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 882 |
+
- `deepspeed`: None
|
| 883 |
+
- `label_smoothing_factor`: 0.0
|
| 884 |
+
- `optim`: adamw_torch_fused
|
| 885 |
+
- `optim_args`: None
|
| 886 |
+
- `adafactor`: False
|
| 887 |
+
- `group_by_length`: False
|
| 888 |
+
- `length_column_name`: length
|
| 889 |
+
- `ddp_find_unused_parameters`: None
|
| 890 |
+
- `ddp_bucket_cap_mb`: None
|
| 891 |
+
- `ddp_broadcast_buffers`: False
|
| 892 |
+
- `dataloader_pin_memory`: True
|
| 893 |
+
- `dataloader_persistent_workers`: False
|
| 894 |
+
- `skip_memory_metrics`: True
|
| 895 |
+
- `use_legacy_prediction_loop`: False
|
| 896 |
+
- `push_to_hub`: False
|
| 897 |
+
- `resume_from_checkpoint`: None
|
| 898 |
+
- `hub_model_id`: None
|
| 899 |
+
- `hub_strategy`: every_save
|
| 900 |
+
- `hub_private_repo`: None
|
| 901 |
+
- `hub_always_push`: False
|
| 902 |
+
- `gradient_checkpointing`: False
|
| 903 |
+
- `gradient_checkpointing_kwargs`: None
|
| 904 |
+
- `include_inputs_for_metrics`: False
|
| 905 |
+
- `include_for_metrics`: []
|
| 906 |
+
- `eval_do_concat_batches`: True
|
| 907 |
+
- `fp16_backend`: auto
|
| 908 |
+
- `push_to_hub_model_id`: None
|
| 909 |
+
- `push_to_hub_organization`: None
|
| 910 |
+
- `mp_parameters`:
|
| 911 |
+
- `auto_find_batch_size`: False
|
| 912 |
+
- `full_determinism`: False
|
| 913 |
+
- `torchdynamo`: None
|
| 914 |
+
- `ray_scope`: last
|
| 915 |
+
- `ddp_timeout`: 1800
|
| 916 |
+
- `torch_compile`: False
|
| 917 |
+
- `torch_compile_backend`: None
|
| 918 |
+
- `torch_compile_mode`: None
|
| 919 |
+
- `include_tokens_per_second`: False
|
| 920 |
+
- `include_num_input_tokens_seen`: False
|
| 921 |
+
- `neftune_noise_alpha`: None
|
| 922 |
+
- `optim_target_modules`: None
|
| 923 |
+
- `batch_eval_metrics`: False
|
| 924 |
+
- `eval_on_start`: False
|
| 925 |
+
- `use_liger_kernel`: False
|
| 926 |
+
- `eval_use_gather_object`: False
|
| 927 |
+
- `average_tokens_across_devices`: False
|
| 928 |
+
- `prompts`: None
|
| 929 |
+
- `batch_sampler`: no_duplicates
|
| 930 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 931 |
+
|
| 932 |
+
</details>
|
| 933 |
+
|
| 934 |
+
### Training Logs
|
| 935 |
+
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
| 936 |
+
|:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
| 937 |
+
| 0.3433 | 10 | 23.532 | - | - | - | - | - | - |
|
| 938 |
+
| 0.6867 | 20 | 10.6294 | - | - | - | - | - | - |
|
| 939 |
+
| 1.0 | 30 | 5.9964 | 0.8436 | 0.8428 | 0.8417 | 0.8373 | 0.8254 | 0.7920 |
|
| 940 |
+
| 1.3433 | 40 | 4.451 | - | - | - | - | - | - |
|
| 941 |
+
| 1.6867 | 50 | 4.7053 | - | - | - | - | - | - |
|
| 942 |
+
| 2.0 | 60 | 3.9423 | 0.8555 | 0.8539 | 0.8535 | 0.8505 | 0.8374 | 0.8075 |
|
| 943 |
+
| 2.3433 | 70 | 4.0009 | - | - | - | - | - | - |
|
| 944 |
+
| 2.6867 | 80 | 4.3913 | - | - | - | - | - | - |
|
| 945 |
+
| 3.0 | 90 | 2.9362 | 0.8566 | 0.8548 | 0.8554 | 0.8514 | 0.8401 | 0.8089 |
|
| 946 |
+
| 3.3433 | 100 | 3.7804 | - | - | - | - | - | - |
|
| 947 |
+
| 3.6867 | 110 | 4.5676 | - | - | - | - | - | - |
|
| 948 |
+
| 3.8927 | 116 | - | 0.8568 | 0.8564 | 0.8554 | 0.8516 | 0.8412 | 0.8111 |
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
### Framework Versions
|
| 952 |
+
- Python: 3.12.10
|
| 953 |
+
- Sentence Transformers: 4.1.0
|
| 954 |
+
- Transformers: 4.51.3
|
| 955 |
+
- PyTorch: 2.7.0+cu126
|
| 956 |
+
- Accelerate: 1.7.0
|
| 957 |
+
- Datasets: 3.6.0
|
| 958 |
+
- Tokenizers: 0.21.1
|
| 959 |
+
|
| 960 |
+
## Citation
|
| 961 |
+
|
| 962 |
+
### BibTeX
|
| 963 |
+
|
| 964 |
+
#### Sentence Transformers
|
| 965 |
+
```bibtex
|
| 966 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 967 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 968 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 969 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 970 |
+
month = "11",
|
| 971 |
+
year = "2019",
|
| 972 |
+
publisher = "Association for Computational Linguistics",
|
| 973 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 974 |
+
}
|
| 975 |
+
```
|
| 976 |
+
|
| 977 |
+
#### MatryoshkaLoss
|
| 978 |
+
```bibtex
|
| 979 |
+
@misc{kusupati2024matryoshka,
|
| 980 |
+
title={Matryoshka Representation Learning},
|
| 981 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
| 982 |
+
year={2024},
|
| 983 |
+
eprint={2205.13147},
|
| 984 |
+
archivePrefix={arXiv},
|
| 985 |
+
primaryClass={cs.LG}
|
| 986 |
+
}
|
| 987 |
+
```
|
| 988 |
+
|
| 989 |
+
#### MultipleNegativesRankingLoss
|
| 990 |
+
```bibtex
|
| 991 |
+
@misc{henderson2017efficient,
|
| 992 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 993 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 994 |
+
year={2017},
|
| 995 |
+
eprint={1705.00652},
|
| 996 |
+
archivePrefix={arXiv},
|
| 997 |
+
primaryClass={cs.CL}
|
| 998 |
+
}
|
| 999 |
+
```
|
| 1000 |
+
|
| 1001 |
+
<!--
|
| 1002 |
+
## Glossary
|
| 1003 |
+
|
| 1004 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1005 |
+
-->
|
| 1006 |
+
|
| 1007 |
+
<!--
|
| 1008 |
+
## Model Card Authors
|
| 1009 |
+
|
| 1010 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1011 |
+
-->
|
| 1012 |
+
|
| 1013 |
+
<!--
|
| 1014 |
+
## Model Card Contact
|
| 1015 |
+
|
| 1016 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1017 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaLoRA"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
|
| 8 |
+
"AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
|
| 9 |
+
"AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
|
| 10 |
+
"AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classifier_dropout": null,
|
| 14 |
+
"emb_pooler": null,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 1024,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 4096,
|
| 21 |
+
"layer_norm_eps": 1e-05,
|
| 22 |
+
"load_trained_adapters": true,
|
| 23 |
+
"lora_adaptations": [
|
| 24 |
+
"retrieval.query",
|
| 25 |
+
"retrieval.passage",
|
| 26 |
+
"separation",
|
| 27 |
+
"classification",
|
| 28 |
+
"text-matching"
|
| 29 |
+
],
|
| 30 |
+
"lora_alpha": 1,
|
| 31 |
+
"lora_dropout_p": 0.0,
|
| 32 |
+
"lora_main_params_trainable": true,
|
| 33 |
+
"lora_rank": 4,
|
| 34 |
+
"matryoshka_dimensions": [
|
| 35 |
+
32,
|
| 36 |
+
64,
|
| 37 |
+
128,
|
| 38 |
+
256,
|
| 39 |
+
512,
|
| 40 |
+
768,
|
| 41 |
+
1024
|
| 42 |
+
],
|
| 43 |
+
"max_position_embeddings": 8194,
|
| 44 |
+
"model_type": "xlm-roberta",
|
| 45 |
+
"num_attention_heads": 16,
|
| 46 |
+
"num_hidden_layers": 24,
|
| 47 |
+
"output_past": true,
|
| 48 |
+
"pad_token_id": 1,
|
| 49 |
+
"position_embedding_type": "rotary",
|
| 50 |
+
"rotary_emb_base": 20000.0,
|
| 51 |
+
"task_instructions": {
|
| 52 |
+
"classification": "",
|
| 53 |
+
"retrieval.passage": "Represent the document for retrieval: ",
|
| 54 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: ",
|
| 55 |
+
"separation": "",
|
| 56 |
+
"text-matching": ""
|
| 57 |
+
},
|
| 58 |
+
"torch_dtype": "bfloat16",
|
| 59 |
+
"transformers_version": "4.51.3",
|
| 60 |
+
"truncate_dim": null,
|
| 61 |
+
"type_vocab_size": 1,
|
| 62 |
+
"use_cache": true,
|
| 63 |
+
"use_flash_attn": true,
|
| 64 |
+
"use_reentrant": false,
|
| 65 |
+
"vocab_size": 250002
|
| 66 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.7.0+cu126"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: ",
|
| 9 |
+
"retrieval.passage": "Represent the document for retrieval: ",
|
| 10 |
+
"separation": "",
|
| 11 |
+
"classification": "",
|
| 12 |
+
"text-matching": ""
|
| 13 |
+
},
|
| 14 |
+
"default_prompt_name": null,
|
| 15 |
+
"similarity_fn_name": "cosine"
|
| 16 |
+
}
|
custom_st.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Transformer(nn.Module):
|
| 15 |
+
"""Huggingface AutoModel to generate token embeddings.
|
| 16 |
+
Loads the correct class, e.g. BERT / RoBERTa etc.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
model_name_or_path: Huggingface models name
|
| 20 |
+
(https://huggingface.co/models)
|
| 21 |
+
max_seq_length: Truncate any inputs longer than max_seq_length
|
| 22 |
+
model_args: Keyword arguments passed to the Huggingface
|
| 23 |
+
Transformers model
|
| 24 |
+
tokenizer_args: Keyword arguments passed to the Huggingface
|
| 25 |
+
Transformers tokenizer
|
| 26 |
+
config_args: Keyword arguments passed to the Huggingface
|
| 27 |
+
Transformers config
|
| 28 |
+
cache_dir: Cache dir for Huggingface Transformers to store/load
|
| 29 |
+
models
|
| 30 |
+
do_lower_case: If true, lowercases the input (independent if the
|
| 31 |
+
model is cased or not)
|
| 32 |
+
tokenizer_name_or_path: Name or path of the tokenizer. When
|
| 33 |
+
None, then model_name_or_path is used
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
save_in_root: bool = True
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
model_name_or_path: str,
|
| 41 |
+
max_seq_length: int = None,
|
| 42 |
+
model_args: Dict[str, Any] = None,
|
| 43 |
+
tokenizer_args: Dict[str, Any] = None,
|
| 44 |
+
config_args: Dict[str, Any] = None,
|
| 45 |
+
cache_dir: str = None,
|
| 46 |
+
do_lower_case: bool = False,
|
| 47 |
+
tokenizer_name_or_path: str = None,
|
| 48 |
+
**kwargs,
|
| 49 |
+
) -> None:
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.config_keys = ["max_seq_length", "do_lower_case"]
|
| 52 |
+
self.do_lower_case = do_lower_case
|
| 53 |
+
if model_args is None:
|
| 54 |
+
model_args = {}
|
| 55 |
+
if tokenizer_args is None:
|
| 56 |
+
tokenizer_args = {}
|
| 57 |
+
if config_args is None:
|
| 58 |
+
config_args = {}
|
| 59 |
+
|
| 60 |
+
if kwargs.get("backend", "torch") != "torch":
|
| 61 |
+
logger.warning(
|
| 62 |
+
f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
|
| 63 |
+
'Continuing with the "torch" backend.'
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
| 67 |
+
|
| 68 |
+
self._lora_adaptations = self.config.lora_adaptations
|
| 69 |
+
if (
|
| 70 |
+
not isinstance(self._lora_adaptations, list)
|
| 71 |
+
or len(self._lora_adaptations) < 1
|
| 72 |
+
):
|
| 73 |
+
raise ValueError(
|
| 74 |
+
f"`lora_adaptations` must be a list and contain at least one element"
|
| 75 |
+
)
|
| 76 |
+
self._adaptation_map = {
|
| 77 |
+
name: idx for idx, name in enumerate(self._lora_adaptations)
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
self.default_task = model_args.pop('default_task', None)
|
| 81 |
+
|
| 82 |
+
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
|
| 83 |
+
|
| 84 |
+
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
| 85 |
+
tokenizer_args["model_max_length"] = max_seq_length
|
| 86 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 87 |
+
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
| 88 |
+
cache_dir=cache_dir,
|
| 89 |
+
**tokenizer_args,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# No max_seq_length set. Try to infer from model
|
| 93 |
+
if max_seq_length is None:
|
| 94 |
+
if (
|
| 95 |
+
hasattr(self.auto_model, "config")
|
| 96 |
+
and hasattr(self.auto_model.config, "max_position_embeddings")
|
| 97 |
+
and hasattr(self.tokenizer, "model_max_length")
|
| 98 |
+
):
|
| 99 |
+
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
|
| 100 |
+
|
| 101 |
+
self.max_seq_length = max_seq_length
|
| 102 |
+
|
| 103 |
+
if tokenizer_name_or_path is not None:
|
| 104 |
+
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@property
|
| 108 |
+
def default_task(self):
|
| 109 |
+
return self._default_task
|
| 110 |
+
|
| 111 |
+
@default_task.setter
|
| 112 |
+
def default_task(self, task: Union[None, str]):
|
| 113 |
+
self._validate_task(task)
|
| 114 |
+
self._default_task = task
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _validate_task(self, task: str):
|
| 118 |
+
if task and task not in self._lora_adaptations:
|
| 119 |
+
raise ValueError(
|
| 120 |
+
f"Unsupported task '{task}'. "
|
| 121 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
|
| 122 |
+
f"Alternatively, don't pass the `task` argument to disable LoRA."
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
def forward(
|
| 126 |
+
self, features: Dict[str, torch.Tensor], task: Optional[str] = None
|
| 127 |
+
) -> Dict[str, torch.Tensor]:
|
| 128 |
+
"""Returns token_embeddings, cls_token"""
|
| 129 |
+
self._validate_task(task)
|
| 130 |
+
task = task or self.default_task
|
| 131 |
+
adapter_mask = None
|
| 132 |
+
if task:
|
| 133 |
+
task_id = self._adaptation_map[task]
|
| 134 |
+
num_examples = features['input_ids'].size(0)
|
| 135 |
+
adapter_mask = torch.full(
|
| 136 |
+
(num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
lora_arguments = (
|
| 140 |
+
{"adapter_mask": adapter_mask} if adapter_mask is not None else {}
|
| 141 |
+
)
|
| 142 |
+
features.pop('prompt_length', None)
|
| 143 |
+
output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
|
| 144 |
+
output_tokens = output_states[0]
|
| 145 |
+
features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
|
| 146 |
+
return features
|
| 147 |
+
|
| 148 |
+
def get_word_embedding_dimension(self) -> int:
|
| 149 |
+
return self.auto_model.config.hidden_size
|
| 150 |
+
|
| 151 |
+
def tokenize(
|
| 152 |
+
self,
|
| 153 |
+
texts: Union[List[str], List[dict], List[Tuple[str, str]]],
|
| 154 |
+
padding: Union[str, bool] = True
|
| 155 |
+
) -> Dict[str, torch.Tensor]:
|
| 156 |
+
"""Tokenizes a text and maps tokens to token-ids"""
|
| 157 |
+
output = {}
|
| 158 |
+
if isinstance(texts[0], str):
|
| 159 |
+
to_tokenize = [texts]
|
| 160 |
+
elif isinstance(texts[0], dict):
|
| 161 |
+
to_tokenize = []
|
| 162 |
+
output["text_keys"] = []
|
| 163 |
+
for lookup in texts:
|
| 164 |
+
text_key, text = next(iter(lookup.items()))
|
| 165 |
+
to_tokenize.append(text)
|
| 166 |
+
output["text_keys"].append(text_key)
|
| 167 |
+
to_tokenize = [to_tokenize]
|
| 168 |
+
else:
|
| 169 |
+
batch1, batch2 = [], []
|
| 170 |
+
for text_tuple in texts:
|
| 171 |
+
batch1.append(text_tuple[0])
|
| 172 |
+
batch2.append(text_tuple[1])
|
| 173 |
+
to_tokenize = [batch1, batch2]
|
| 174 |
+
|
| 175 |
+
# strip
|
| 176 |
+
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
|
| 177 |
+
|
| 178 |
+
# Lowercase
|
| 179 |
+
if self.do_lower_case:
|
| 180 |
+
to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
|
| 181 |
+
|
| 182 |
+
output.update(
|
| 183 |
+
self.tokenizer(
|
| 184 |
+
*to_tokenize,
|
| 185 |
+
padding=padding,
|
| 186 |
+
truncation="longest_first",
|
| 187 |
+
return_tensors="pt",
|
| 188 |
+
max_length=self.max_seq_length,
|
| 189 |
+
)
|
| 190 |
+
)
|
| 191 |
+
return output
|
| 192 |
+
|
| 193 |
+
def get_config_dict(self) -> Dict[str, Any]:
|
| 194 |
+
return {key: self.__dict__[key] for key in self.config_keys}
|
| 195 |
+
|
| 196 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 197 |
+
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
| 198 |
+
self.tokenizer.save_pretrained(output_path)
|
| 199 |
+
|
| 200 |
+
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
|
| 201 |
+
json.dump(self.get_config_dict(), fOut, indent=2)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
@classmethod
|
| 205 |
+
def load(cls, input_path: str) -> "Transformer":
|
| 206 |
+
# Old classes used other config names than 'sentence_bert_config.json'
|
| 207 |
+
for config_name in [
|
| 208 |
+
"sentence_bert_config.json",
|
| 209 |
+
"sentence_roberta_config.json",
|
| 210 |
+
"sentence_distilbert_config.json",
|
| 211 |
+
"sentence_camembert_config.json",
|
| 212 |
+
"sentence_albert_config.json",
|
| 213 |
+
"sentence_xlm-roberta_config.json",
|
| 214 |
+
"sentence_xlnet_config.json",
|
| 215 |
+
]:
|
| 216 |
+
sbert_config_path = os.path.join(input_path, config_name)
|
| 217 |
+
if os.path.exists(sbert_config_path):
|
| 218 |
+
break
|
| 219 |
+
|
| 220 |
+
with open(sbert_config_path) as fIn:
|
| 221 |
+
config = json.load(fIn)
|
| 222 |
+
# Don't allow configs to set trust_remote_code
|
| 223 |
+
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
| 224 |
+
config["model_args"].pop("trust_remote_code")
|
| 225 |
+
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
| 226 |
+
config["tokenizer_args"].pop("trust_remote_code")
|
| 227 |
+
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
| 228 |
+
config["config_args"].pop("trust_remote_code")
|
| 229 |
+
return cls(model_name_or_path=input_path, **config)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77438c542b0993994f69a4e6c0cf7341c8024b647f3fe764660ad9e6696aaad9
|
| 3 |
+
size 1144685320
|
modules.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "transformer",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "custom_st.Transformer",
|
| 7 |
+
"kwargs": [
|
| 8 |
+
"task"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"idx": 1,
|
| 13 |
+
"name": "pooler",
|
| 14 |
+
"path": "1_Pooling",
|
| 15 |
+
"type": "sentence_transformers.models.Pooling"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"idx": 2,
|
| 19 |
+
"name": "normalizer",
|
| 20 |
+
"path": "2_Normalize",
|
| 21 |
+
"type": "sentence_transformers.models.Normalize"
|
| 22 |
+
}
|
| 23 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8194,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
|
| 3 |
+
size 17082988
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 8194,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|