import os import json import numpy as np import scipy.io.wavfile as wavfile from onnxruntime import InferenceSession from phonemizer import phonemize # === Step 1: Load phoneme-to-ID vocabulary === CONFIG_PATH = "./config_kokoro.json" # Download this from Hugging Face: Kokoro-82M/config.json with open(CONFIG_PATH, "r", encoding="utf-8") as f: config = json.load(f) phoneme_to_id = config["vocab"] # === Step 2: Convert text to phonemes using espeak-ng === text = "Hi how are you, what is your name. tell me something" phonemes = phonemize( text, language="en-us", backend="espeak", strip=True, preserve_punctuation=True, with_stress=True ) # === Step 3: Filter out unsupported phonemes and convert to token IDs === phonemes = "".join(p for p in phonemes if p in phoneme_to_id) print("Phonemes:", phonemes) tokens = [phoneme_to_id[p] for p in phonemes] print("Token IDs:", tokens) # === Step 4: Prepare style embedding and input IDs === assert len(tokens) <= 510, "Token sequence too long (max 510 phonemes)" voices = np.fromfile('./voices/af.bin', dtype=np.float32).reshape(-1, 1, 256) ref_s = voices[len(tokens)] # Select style vector based on token length tokens = [[0, *tokens, 0]] # Add padding tokens at the beginning and end # === Step 5: Run ONNX model inference === model_name = 'model.onnx' sess = InferenceSession(os.path.join('onnx', model_name)) audio = sess.run(None, { 'input_ids': tokens, 'style': ref_s, 'speed': np.ones(1, dtype=np.float32), })[0] # === Step 6: Save output audio as a 24kHz WAV file === wavfile.write('audio.wav', 24000, audio[0]) print("✅ Audio saved to audio.wav")