Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- de
|
| 5 |
+
library_name: transformers
|
| 6 |
+
pipeline_tag: automatic-speech-recognition
|
| 7 |
+
model-index:
|
| 8 |
+
- name: whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
|
| 9 |
+
results:
|
| 10 |
+
- task:
|
| 11 |
+
type: automatic-speech-recognition
|
| 12 |
+
name: Speech Recognition
|
| 13 |
+
dataset:
|
| 14 |
+
name: German ASR Data-Mix
|
| 15 |
+
type: flozi00/asr-german-mixed
|
| 16 |
+
metrics:
|
| 17 |
+
- type: wer
|
| 18 |
+
value: 4.77 %
|
| 19 |
+
name: Test WER
|
| 20 |
+
datasets:
|
| 21 |
+
- flozi00/asr-german-mixed
|
| 22 |
+
- flozi00/asr-german-mixed-evals
|
| 23 |
+
base_model:
|
| 24 |
+
- primeline/whisper-large-v3-german
|
| 25 |
+
---
|
| 26 |
+
## Quant
|
| 27 |
+
|
| 28 |
+
This is only a int8 quantization from primeline/whisper-large-v3-german per ctranslate2-converter, for usage e.g. in ctranslate2, faster-whisper, etc.
|
| 29 |
+
|
| 30 |
+
## Modelcard from primeline/whisper-large-v3-german
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
### Summary
|
| 34 |
+
This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
### Applications
|
| 39 |
+
This model can be used in various application areas, including
|
| 40 |
+
|
| 41 |
+
- Transcription of spoken German language
|
| 42 |
+
- Voice commands and voice control
|
| 43 |
+
- Automatic subtitling for German videos
|
| 44 |
+
- Voice-based search queries in German
|
| 45 |
+
- Dictation functions in word processing programs
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
## Model family
|
| 49 |
+
|
| 50 |
+
| Model | Parameters | link |
|
| 51 |
+
|----------------------------------|------------|--------------------------------------------------------------|
|
| 52 |
+
| Whisper large v3 german | 1.54B | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
|
| 53 |
+
| Whisper large v3 turbo german | 809M | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
|
| 54 |
+
| Distil-whisper large v3 german | 756M | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
|
| 55 |
+
| tiny whisper | 37.8M | [link](https://huggingface.co/primeline/whisper-tiny-german) |
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
## Evaluations
|
| 59 |
+
|
| 60 |
+
| Dataset | openai-whisper-large-v3-turbo | openai-whisper-large-v3 | primeline-whisper-large-v3-german | nyrahealth-CrisperWhisper | primeline-whisper-large-v3-turbo-german |
|
| 61 |
+
|---------------------------------|-------------------------------|-------------------------|----------------------------------|---------------------------|----------------------------------------|
|
| 62 |
+
| common_voice_19_0 | 6.31 | 5.84 | 4.30 | **4.14** | 4.28 |
|
| 63 |
+
| Tuda-De | 11.45 | 11.21 | 9.89 | 13.88 | **8.10** |
|
| 64 |
+
| multilingual librispeech | 18.03 | 17.69 | 13.46 | 10.10 | **4.71** |
|
| 65 |
+
| All | 14.16 | 13.79 | 10.51 | 8.48 | **4.75** |
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
### Training data
|
| 69 |
+
The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance.
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
### Training process
|
| 73 |
+
The training of the model was performed with the following hyperparameters
|
| 74 |
+
|
| 75 |
+
- Batch size: 12288
|
| 76 |
+
- Epochs: 3
|
| 77 |
+
- Learning rate: 1e-6
|
| 78 |
+
- Data augmentation: No
|
| 79 |
+
- Optimizer: [Ademamix](https://arxiv.org/abs/2409.03137)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
### How to use
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
import torch
|
| 86 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 87 |
+
from datasets import load_dataset
|
| 88 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 89 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 90 |
+
model_id = "primeline/whisper-large-v3-turbo-german"
|
| 91 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 92 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 93 |
+
)
|
| 94 |
+
model.to(device)
|
| 95 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 96 |
+
pipe = pipeline(
|
| 97 |
+
"automatic-speech-recognition",
|
| 98 |
+
model=model,
|
| 99 |
+
tokenizer=processor.tokenizer,
|
| 100 |
+
feature_extractor=processor.feature_extractor,
|
| 101 |
+
max_new_tokens=128,
|
| 102 |
+
chunk_length_s=30,
|
| 103 |
+
batch_size=16,
|
| 104 |
+
return_timestamps=True,
|
| 105 |
+
torch_dtype=torch_dtype,
|
| 106 |
+
device=device,
|
| 107 |
+
)
|
| 108 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 109 |
+
sample = dataset[0]["audio"]
|
| 110 |
+
result = pipe(sample)
|
| 111 |
+
print(result["text"])
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
## [About us](https://primeline-ai.com/en/)
|
| 116 |
+
|
| 117 |
+
[](https://primeline-ai.com/en/)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
Your partner for AI infrastructure in Germany <br>
|
| 121 |
+
Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. Optimized for AI training and inference.
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)
|