csuazob commited on
Commit
efab9c7
·
1 Parent(s): 3ac71eb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ model-index:
8
+ - name: twitter-xlm-roberta-base-sentiment-finetunned-davincis-local
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # twitter-xlm-roberta-base-sentiment-finetunned-davincis-local
16
+
17
+ This model is a fine-tuned version of [citizenlab/twitter-xlm-roberta-base-sentiment-finetunned](https://huggingface.co/citizenlab/twitter-xlm-roberta-base-sentiment-finetunned) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5461
20
+ - Accuracy: 0.9302
21
+ - F1: 0.9301
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 72
42
+ - eval_batch_size: 72
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 20
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
52
+ | 0.4006 | 1.0 | 41 | 0.3037 | 0.8779 | 0.8771 |
53
+ | 0.2165 | 2.0 | 82 | 0.2007 | 0.9205 | 0.9205 |
54
+ | 0.1311 | 3.0 | 123 | 0.2124 | 0.9244 | 0.9244 |
55
+ | 0.0839 | 4.0 | 164 | 0.2504 | 0.9341 | 0.9341 |
56
+ | 0.0525 | 5.0 | 205 | 0.3695 | 0.9147 | 0.9144 |
57
+ | 0.0392 | 6.0 | 246 | 0.3393 | 0.9244 | 0.9243 |
58
+ | 0.0282 | 7.0 | 287 | 0.4203 | 0.9244 | 0.9242 |
59
+ | 0.0205 | 8.0 | 328 | 0.3889 | 0.9302 | 0.9301 |
60
+ | 0.012 | 9.0 | 369 | 0.6586 | 0.9012 | 0.9006 |
61
+ | 0.0069 | 10.0 | 410 | 0.4873 | 0.9302 | 0.9301 |
62
+ | 0.005 | 11.0 | 451 | 0.6105 | 0.9089 | 0.9085 |
63
+ | 0.0082 | 12.0 | 492 | 0.4642 | 0.9302 | 0.9301 |
64
+ | 0.0022 | 13.0 | 533 | 0.3709 | 0.9516 | 0.9515 |
65
+ | 0.0088 | 14.0 | 574 | 0.5322 | 0.9283 | 0.9281 |
66
+ | 0.0067 | 15.0 | 615 | 0.6661 | 0.9128 | 0.9124 |
67
+ | 0.0015 | 16.0 | 656 | 0.5450 | 0.9283 | 0.9282 |
68
+ | 0.0006 | 17.0 | 697 | 0.5453 | 0.9302 | 0.9301 |
69
+ | 0.0002 | 18.0 | 738 | 0.5555 | 0.9302 | 0.9301 |
70
+ | 0.0018 | 19.0 | 779 | 0.5408 | 0.9302 | 0.9301 |
71
+ | 0.0022 | 20.0 | 820 | 0.5461 | 0.9302 | 0.9301 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.27.4
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.11.0
79
+ - Tokenizers 0.13.2