ssc-bew-mms-model

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7747
  • Cer: 0.2038
  • Wer: 0.6111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
1.6619 0.3063 200 0.9694 0.2219 0.6669
1.5435 0.6126 400 0.8620 0.2158 0.6542
1.5126 0.9188 600 0.8212 0.2101 0.6326
1.4544 1.2251 800 0.8192 0.2101 0.6346
1.4753 1.5314 1000 0.8128 0.2096 0.6393
1.4388 1.8377 1200 0.8112 0.2098 0.6292
1.4494 2.1440 1400 0.8120 0.2084 0.6268
1.4289 2.4502 1600 0.7985 0.2075 0.6254
1.4736 2.7565 1800 0.7951 0.2070 0.6263
1.4217 3.0628 2000 0.8154 0.2104 0.6369
1.4146 3.3691 2200 0.8092 0.2094 0.6295
1.4205 3.6753 2400 0.8056 0.2092 0.6298
1.3951 3.9816 2600 0.8070 0.2087 0.6384
1.3695 4.2879 2800 0.7980 0.2078 0.6261
1.4743 4.5942 3000 0.8138 0.2099 0.6376
1.4499 4.9005 3200 0.7828 0.2041 0.6168
1.3801 5.2067 3400 0.8019 0.2086 0.6324
1.4191 5.5130 3600 0.7931 0.2064 0.6229
1.4359 5.8193 3800 0.7794 0.2034 0.6144
1.407 6.1256 4000 0.7877 0.2064 0.6243
1.4079 6.4319 4200 0.7963 0.2071 0.6221
1.417 6.7381 4400 0.7839 0.2048 0.6139
1.4031 7.0444 4600 0.7759 0.2033 0.6098
1.3999 7.3507 4800 0.7781 0.2043 0.6137
1.4052 7.6570 5000 0.7769 0.2041 0.6110
1.4102 7.9632 5200 0.7750 0.2031 0.6085
1.392 8.2695 5400 0.7776 0.2041 0.6115
1.4032 8.5758 5600 0.7733 0.2033 0.6096
1.3956 8.8821 5800 0.7761 0.2038 0.6101
1.4148 9.1884 6000 0.7761 0.2040 0.6102
1.3921 9.4946 6200 0.7746 0.2036 0.6099
1.4109 9.8009 6400 0.7747 0.2038 0.6111

Framework versions

  • Transformers 4.57.2
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.0
Downloads last month
139
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ctaguchi/ssc-bew-mms-model

Finetuned
(376)
this model