ssc-bew-mms-model
This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7747
- Cer: 0.2038
- Wer: 0.6111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 1.6619 | 0.3063 | 200 | 0.9694 | 0.2219 | 0.6669 |
| 1.5435 | 0.6126 | 400 | 0.8620 | 0.2158 | 0.6542 |
| 1.5126 | 0.9188 | 600 | 0.8212 | 0.2101 | 0.6326 |
| 1.4544 | 1.2251 | 800 | 0.8192 | 0.2101 | 0.6346 |
| 1.4753 | 1.5314 | 1000 | 0.8128 | 0.2096 | 0.6393 |
| 1.4388 | 1.8377 | 1200 | 0.8112 | 0.2098 | 0.6292 |
| 1.4494 | 2.1440 | 1400 | 0.8120 | 0.2084 | 0.6268 |
| 1.4289 | 2.4502 | 1600 | 0.7985 | 0.2075 | 0.6254 |
| 1.4736 | 2.7565 | 1800 | 0.7951 | 0.2070 | 0.6263 |
| 1.4217 | 3.0628 | 2000 | 0.8154 | 0.2104 | 0.6369 |
| 1.4146 | 3.3691 | 2200 | 0.8092 | 0.2094 | 0.6295 |
| 1.4205 | 3.6753 | 2400 | 0.8056 | 0.2092 | 0.6298 |
| 1.3951 | 3.9816 | 2600 | 0.8070 | 0.2087 | 0.6384 |
| 1.3695 | 4.2879 | 2800 | 0.7980 | 0.2078 | 0.6261 |
| 1.4743 | 4.5942 | 3000 | 0.8138 | 0.2099 | 0.6376 |
| 1.4499 | 4.9005 | 3200 | 0.7828 | 0.2041 | 0.6168 |
| 1.3801 | 5.2067 | 3400 | 0.8019 | 0.2086 | 0.6324 |
| 1.4191 | 5.5130 | 3600 | 0.7931 | 0.2064 | 0.6229 |
| 1.4359 | 5.8193 | 3800 | 0.7794 | 0.2034 | 0.6144 |
| 1.407 | 6.1256 | 4000 | 0.7877 | 0.2064 | 0.6243 |
| 1.4079 | 6.4319 | 4200 | 0.7963 | 0.2071 | 0.6221 |
| 1.417 | 6.7381 | 4400 | 0.7839 | 0.2048 | 0.6139 |
| 1.4031 | 7.0444 | 4600 | 0.7759 | 0.2033 | 0.6098 |
| 1.3999 | 7.3507 | 4800 | 0.7781 | 0.2043 | 0.6137 |
| 1.4052 | 7.6570 | 5000 | 0.7769 | 0.2041 | 0.6110 |
| 1.4102 | 7.9632 | 5200 | 0.7750 | 0.2031 | 0.6085 |
| 1.392 | 8.2695 | 5400 | 0.7776 | 0.2041 | 0.6115 |
| 1.4032 | 8.5758 | 5600 | 0.7733 | 0.2033 | 0.6096 |
| 1.3956 | 8.8821 | 5800 | 0.7761 | 0.2038 | 0.6101 |
| 1.4148 | 9.1884 | 6000 | 0.7761 | 0.2040 | 0.6102 |
| 1.3921 | 9.4946 | 6200 | 0.7746 | 0.2036 | 0.6099 |
| 1.4109 | 9.8009 | 6400 | 0.7747 | 0.2038 | 0.6111 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0
- Downloads last month
- 139
Model tree for ctaguchi/ssc-bew-mms-model
Base model
facebook/mms-1b-all