d4nieldev commited on
Commit
fd8906a
·
verified ·
1 Parent(s): 49ea058

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-4b-it
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-3-4b-it",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "fc2",
29
+ "out_proj",
30
+ "o_proj",
31
+ "fc1",
32
+ "v_proj",
33
+ "gate_proj",
34
+ "q_proj",
35
+ "k_proj",
36
+ "down_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d15819dd148915f88de894d2184cc7d25b1678fc97bb6d7adbb0efc933568cf9
3
+ size 154294986
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2969c28516ecb1c6ab1b2fb1a582fccd8b5c74002693dfcef6bece5a78ffd47
3
+ size 238821798
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7706f2a064488c44401ec8b9ffeef1dcd4dfcb0d6ec0279aa756079838dbbe
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2985260f3d01d01c1cd0ea4d80cf8038f9cbe9a9b731c7e39517c1a93ca3bb5f
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 20958,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.047714476572192,
14
+ "grad_norm": 0.023498278111219406,
15
+ "learning_rate": 0.00019523809523809525,
16
+ "loss": 0.4674,
17
+ "mean_token_accuracy": 0.8906204112768173,
18
+ "num_tokens": 360041.0,
19
+ "step": 500
20
+ },
21
+ {
22
+ "epoch": 0.095428953144384,
23
+ "grad_norm": 3.823547601699829,
24
+ "learning_rate": 0.00019046664758087605,
25
+ "loss": 0.3194,
26
+ "mean_token_accuracy": 0.9205255397558212,
27
+ "num_tokens": 727772.0,
28
+ "step": 1000
29
+ },
30
+ {
31
+ "epoch": 0.143143429716576,
32
+ "grad_norm": 0.0001839943724917248,
33
+ "learning_rate": 0.00018569519992365686,
34
+ "loss": 0.2674,
35
+ "mean_token_accuracy": 0.9327976078987121,
36
+ "num_tokens": 1097406.0,
37
+ "step": 1500
38
+ },
39
+ {
40
+ "epoch": 0.190857906288768,
41
+ "grad_norm": 4.199777126312256,
42
+ "learning_rate": 0.00018092375226643766,
43
+ "loss": 0.326,
44
+ "mean_token_accuracy": 0.920593403160572,
45
+ "num_tokens": 1462220.0,
46
+ "step": 2000
47
+ },
48
+ {
49
+ "epoch": 0.23857238286096002,
50
+ "grad_norm": 5.751025676727295,
51
+ "learning_rate": 0.00017615230460921847,
52
+ "loss": 0.2693,
53
+ "mean_token_accuracy": 0.936355301618576,
54
+ "num_tokens": 1828224.0,
55
+ "step": 2500
56
+ },
57
+ {
58
+ "epoch": 0.286286859433152,
59
+ "grad_norm": 3.971045732498169,
60
+ "learning_rate": 0.00017138085695199925,
61
+ "loss": 0.2827,
62
+ "mean_token_accuracy": 0.9261101527214051,
63
+ "num_tokens": 2211342.0,
64
+ "step": 3000
65
+ },
66
+ {
67
+ "epoch": 0.33400133600534404,
68
+ "grad_norm": 2.15079665184021,
69
+ "learning_rate": 0.00016660940929478005,
70
+ "loss": 0.2461,
71
+ "mean_token_accuracy": 0.9350018633604049,
72
+ "num_tokens": 2572498.0,
73
+ "step": 3500
74
+ },
75
+ {
76
+ "epoch": 0.381715812577536,
77
+ "grad_norm": 0.5263189077377319,
78
+ "learning_rate": 0.00016183796163756083,
79
+ "loss": 0.2534,
80
+ "mean_token_accuracy": 0.9374513441324234,
81
+ "num_tokens": 2949312.0,
82
+ "step": 4000
83
+ },
84
+ {
85
+ "epoch": 0.42943028914972803,
86
+ "grad_norm": 0.004941379185765982,
87
+ "learning_rate": 0.00015706651398034164,
88
+ "loss": 0.2395,
89
+ "mean_token_accuracy": 0.9378743978738785,
90
+ "num_tokens": 3314910.0,
91
+ "step": 4500
92
+ },
93
+ {
94
+ "epoch": 0.47714476572192005,
95
+ "grad_norm": 0.007795912679284811,
96
+ "learning_rate": 0.00015229506632312244,
97
+ "loss": 0.2284,
98
+ "mean_token_accuracy": 0.9409392136335373,
99
+ "num_tokens": 3686624.0,
100
+ "step": 5000
101
+ },
102
+ {
103
+ "epoch": 0.5248592422941121,
104
+ "grad_norm": 0.0033825524151325226,
105
+ "learning_rate": 0.00014752361866590325,
106
+ "loss": 0.2145,
107
+ "mean_token_accuracy": 0.9464458491802216,
108
+ "num_tokens": 4063459.0,
109
+ "step": 5500
110
+ },
111
+ {
112
+ "epoch": 0.572573718866304,
113
+ "grad_norm": 3.8457958698272705,
114
+ "learning_rate": 0.00014275217100868402,
115
+ "loss": 0.2268,
116
+ "mean_token_accuracy": 0.9410561621189117,
117
+ "num_tokens": 4423993.0,
118
+ "step": 6000
119
+ },
120
+ {
121
+ "epoch": 0.620288195438496,
122
+ "grad_norm": 0.020238121971488,
123
+ "learning_rate": 0.00013798072335146483,
124
+ "loss": 0.223,
125
+ "mean_token_accuracy": 0.9393890690803528,
126
+ "num_tokens": 4788203.0,
127
+ "step": 6500
128
+ },
129
+ {
130
+ "epoch": 0.6680026720106881,
131
+ "grad_norm": 0.0006973391864448786,
132
+ "learning_rate": 0.00013320927569424564,
133
+ "loss": 0.2434,
134
+ "mean_token_accuracy": 0.9404154337644577,
135
+ "num_tokens": 5162496.0,
136
+ "step": 7000
137
+ },
138
+ {
139
+ "epoch": 0.71571714858288,
140
+ "grad_norm": 0.0010198453674092889,
141
+ "learning_rate": 0.00012843782803702644,
142
+ "loss": 0.191,
143
+ "mean_token_accuracy": 0.9535960764884949,
144
+ "num_tokens": 5520427.0,
145
+ "step": 7500
146
+ },
147
+ {
148
+ "epoch": 0.763431625155072,
149
+ "grad_norm": 0.001297333394177258,
150
+ "learning_rate": 0.00012366638037980725,
151
+ "loss": 0.2167,
152
+ "mean_token_accuracy": 0.942195966720581,
153
+ "num_tokens": 5901763.0,
154
+ "step": 8000
155
+ },
156
+ {
157
+ "epoch": 0.8111461017272641,
158
+ "grad_norm": 6.195448398590088,
159
+ "learning_rate": 0.00011889493272258805,
160
+ "loss": 0.2305,
161
+ "mean_token_accuracy": 0.9376264967918396,
162
+ "num_tokens": 6272492.0,
163
+ "step": 8500
164
+ },
165
+ {
166
+ "epoch": 0.8588605782994561,
167
+ "grad_norm": 0.0025545568205416203,
168
+ "learning_rate": 0.00011412348506536883,
169
+ "loss": 0.2303,
170
+ "mean_token_accuracy": 0.9435879285335541,
171
+ "num_tokens": 6657487.0,
172
+ "step": 9000
173
+ },
174
+ {
175
+ "epoch": 0.906575054871648,
176
+ "grad_norm": 0.0006595577578991652,
177
+ "learning_rate": 0.00010935203740814964,
178
+ "loss": 0.179,
179
+ "mean_token_accuracy": 0.9520990616083145,
180
+ "num_tokens": 7022908.0,
181
+ "step": 9500
182
+ },
183
+ {
184
+ "epoch": 0.9542895314438401,
185
+ "grad_norm": 3.1752443313598633,
186
+ "learning_rate": 0.00010458058975093044,
187
+ "loss": 0.1827,
188
+ "mean_token_accuracy": 0.9488343714475632,
189
+ "num_tokens": 7376243.0,
190
+ "step": 10000
191
+ },
192
+ {
193
+ "epoch": 1.002004008016032,
194
+ "grad_norm": 0.001512572169303894,
195
+ "learning_rate": 9.980914209371123e-05,
196
+ "loss": 0.2101,
197
+ "mean_token_accuracy": 0.9424606282711029,
198
+ "num_tokens": 7749938.0,
199
+ "step": 10500
200
+ },
201
+ {
202
+ "epoch": 1.0497184845882241,
203
+ "grad_norm": 3.992393732070923,
204
+ "learning_rate": 9.503769443649203e-05,
205
+ "loss": 0.1309,
206
+ "mean_token_accuracy": 0.9618149808645249,
207
+ "num_tokens": 8127846.0,
208
+ "step": 11000
209
+ },
210
+ {
211
+ "epoch": 1.097432961160416,
212
+ "grad_norm": 0.00025509227998554707,
213
+ "learning_rate": 9.026624677927283e-05,
214
+ "loss": 0.1219,
215
+ "mean_token_accuracy": 0.9635183781385421,
216
+ "num_tokens": 8503956.0,
217
+ "step": 11500
218
+ },
219
+ {
220
+ "epoch": 1.145147437732608,
221
+ "grad_norm": 0.0013997952919453382,
222
+ "learning_rate": 8.549479912205364e-05,
223
+ "loss": 0.1235,
224
+ "mean_token_accuracy": 0.963010191321373,
225
+ "num_tokens": 8862553.0,
226
+ "step": 12000
227
+ },
228
+ {
229
+ "epoch": 1.1928619143048,
230
+ "grad_norm": 2.114091157913208,
231
+ "learning_rate": 8.072335146483443e-05,
232
+ "loss": 0.1271,
233
+ "mean_token_accuracy": 0.9629592669010162,
234
+ "num_tokens": 9233864.0,
235
+ "step": 12500
236
+ },
237
+ {
238
+ "epoch": 1.240576390876992,
239
+ "grad_norm": 0.277444452047348,
240
+ "learning_rate": 7.595190380761523e-05,
241
+ "loss": 0.1187,
242
+ "mean_token_accuracy": 0.9649668201208115,
243
+ "num_tokens": 9596971.0,
244
+ "step": 13000
245
+ },
246
+ {
247
+ "epoch": 1.288290867449184,
248
+ "grad_norm": 4.878781318664551,
249
+ "learning_rate": 7.118045615039604e-05,
250
+ "loss": 0.1226,
251
+ "mean_token_accuracy": 0.9633177869319915,
252
+ "num_tokens": 9966614.0,
253
+ "step": 13500
254
+ },
255
+ {
256
+ "epoch": 1.3360053440213762,
257
+ "grad_norm": 5.269028186798096,
258
+ "learning_rate": 6.640900849317683e-05,
259
+ "loss": 0.1336,
260
+ "mean_token_accuracy": 0.9619411797523498,
261
+ "num_tokens": 10338731.0,
262
+ "step": 14000
263
+ },
264
+ {
265
+ "epoch": 1.3837198205935681,
266
+ "grad_norm": 0.000423251127358526,
267
+ "learning_rate": 6.163756083595764e-05,
268
+ "loss": 0.1386,
269
+ "mean_token_accuracy": 0.9611272529363633,
270
+ "num_tokens": 10724381.0,
271
+ "step": 14500
272
+ },
273
+ {
274
+ "epoch": 1.43143429716576,
275
+ "grad_norm": 0.754705548286438,
276
+ "learning_rate": 5.6866113178738436e-05,
277
+ "loss": 0.1182,
278
+ "mean_token_accuracy": 0.9661157331466674,
279
+ "num_tokens": 11094900.0,
280
+ "step": 15000
281
+ },
282
+ {
283
+ "epoch": 1.479148773737952,
284
+ "grad_norm": 0.0017857268685474992,
285
+ "learning_rate": 5.2094665521519235e-05,
286
+ "loss": 0.1175,
287
+ "mean_token_accuracy": 0.9679548003673554,
288
+ "num_tokens": 11454717.0,
289
+ "step": 15500
290
+ },
291
+ {
292
+ "epoch": 1.5268632503101442,
293
+ "grad_norm": 3.5908143520355225,
294
+ "learning_rate": 4.732321786430003e-05,
295
+ "loss": 0.11,
296
+ "mean_token_accuracy": 0.9671754879951477,
297
+ "num_tokens": 11832591.0,
298
+ "step": 16000
299
+ },
300
+ {
301
+ "epoch": 1.5745777268823362,
302
+ "grad_norm": 0.010208655148744583,
303
+ "learning_rate": 4.255177020708083e-05,
304
+ "loss": 0.115,
305
+ "mean_token_accuracy": 0.9662747744321823,
306
+ "num_tokens": 12223203.0,
307
+ "step": 16500
308
+ },
309
+ {
310
+ "epoch": 1.6222922034545282,
311
+ "grad_norm": 0.002450750907883048,
312
+ "learning_rate": 3.778032254986163e-05,
313
+ "loss": 0.1112,
314
+ "mean_token_accuracy": 0.9668832242488861,
315
+ "num_tokens": 12593144.0,
316
+ "step": 17000
317
+ },
318
+ {
319
+ "epoch": 1.6700066800267201,
320
+ "grad_norm": 0.004513042513281107,
321
+ "learning_rate": 3.300887489264243e-05,
322
+ "loss": 0.1004,
323
+ "mean_token_accuracy": 0.9708232057094573,
324
+ "num_tokens": 12954505.0,
325
+ "step": 17500
326
+ },
327
+ {
328
+ "epoch": 1.7177211565989121,
329
+ "grad_norm": 0.007037173956632614,
330
+ "learning_rate": 2.8237427235423232e-05,
331
+ "loss": 0.1114,
332
+ "mean_token_accuracy": 0.9671108702421188,
333
+ "num_tokens": 13307858.0,
334
+ "step": 18000
335
+ },
336
+ {
337
+ "epoch": 1.765435633171104,
338
+ "grad_norm": 0.015288141556084156,
339
+ "learning_rate": 2.3465979578204027e-05,
340
+ "loss": 0.1034,
341
+ "mean_token_accuracy": 0.9698293421268463,
342
+ "num_tokens": 13673816.0,
343
+ "step": 18500
344
+ },
345
+ {
346
+ "epoch": 1.813150109743296,
347
+ "grad_norm": 6.889008045196533,
348
+ "learning_rate": 1.869453192098483e-05,
349
+ "loss": 0.0977,
350
+ "mean_token_accuracy": 0.9710470995903016,
351
+ "num_tokens": 14038630.0,
352
+ "step": 19000
353
+ },
354
+ {
355
+ "epoch": 1.860864586315488,
356
+ "grad_norm": 2.6273930072784424,
357
+ "learning_rate": 1.3923084263765626e-05,
358
+ "loss": 0.0936,
359
+ "mean_token_accuracy": 0.9728796405792236,
360
+ "num_tokens": 14401139.0,
361
+ "step": 19500
362
+ },
363
+ {
364
+ "epoch": 1.90857906288768,
365
+ "grad_norm": 0.004859536420553923,
366
+ "learning_rate": 9.151636606546427e-06,
367
+ "loss": 0.0929,
368
+ "mean_token_accuracy": 0.9708857105970383,
369
+ "num_tokens": 14770982.0,
370
+ "step": 20000
371
+ },
372
+ {
373
+ "epoch": 1.9562935394598722,
374
+ "grad_norm": 0.4923778176307678,
375
+ "learning_rate": 4.380188949327226e-06,
376
+ "loss": 0.0963,
377
+ "mean_token_accuracy": 0.9713275592327117,
378
+ "num_tokens": 15136348.0,
379
+ "step": 20500
380
+ }
381
+ ],
382
+ "logging_steps": 500,
383
+ "max_steps": 20958,
384
+ "num_input_tokens_seen": 0,
385
+ "num_train_epochs": 2,
386
+ "save_steps": 5000,
387
+ "stateful_callbacks": {
388
+ "TrainerControl": {
389
+ "args": {
390
+ "should_epoch_stop": false,
391
+ "should_evaluate": false,
392
+ "should_log": false,
393
+ "should_save": true,
394
+ "should_training_stop": true
395
+ },
396
+ "attributes": {}
397
+ }
398
+ },
399
+ "total_flos": 3.399363404153889e+17,
400
+ "train_batch_size": 1,
401
+ "trial_name": null,
402
+ "trial_params": null
403
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa47ddc719ecb3b675964f22519fd406d4261951c3c54a16f54cc2873eb4563
3
+ size 6328